DeepCritical / examples /README.md
VibecoderMcSwaggins's picture
fix: update remaining bioRxiv references to Europe PMC in examples
1515e72
|
raw
history blame
4.4 kB

DeepCritical Examples

NO MOCKS. NO FAKE DATA. REAL SCIENCE.

These demos run the REAL drug repurposing research pipeline with actual API calls.


Prerequisites

You MUST have API keys configured:

# Copy the example and add your keys
cp .env.example .env

# Required (pick one):
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...

# Optional (higher PubMed rate limits):
NCBI_API_KEY=your-key

Examples

1. Search Demo (No LLM Required)

Demonstrates REAL parallel search across PubMed, ClinicalTrials.gov, and Europe PMC.

uv run python examples/search_demo/run_search.py "metformin cancer"

What's REAL:

  • Actual NCBI E-utilities API calls (PubMed)
  • Actual ClinicalTrials.gov API calls
  • Actual Europe PMC API calls (includes preprints)
  • Real papers, real trials, real preprints

2. Embeddings Demo (No LLM Required)

Demonstrates REAL semantic search and deduplication.

uv run python examples/embeddings_demo/run_embeddings.py

What's REAL:

  • Actual sentence-transformers model (all-MiniLM-L6-v2)
  • Actual ChromaDB vector storage
  • Real cosine similarity computations
  • Real semantic deduplication

3. Orchestrator Demo (LLM Required)

Demonstrates the REAL search-judge-synthesize loop.

uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
uv run python examples/orchestrator_demo/run_agent.py "aspirin alzheimer" --iterations 5

What's REAL:

  • Real PubMed + ClinicalTrials + Europe PMC searches
  • Real LLM judge evaluating evidence quality
  • Real iterative refinement based on LLM decisions
  • Real research synthesis

4. Magentic Demo (OpenAI Required)

Demonstrates REAL multi-agent coordination using Microsoft Agent Framework.

# Requires OPENAI_API_KEY specifically
uv run python examples/orchestrator_demo/run_magentic.py "metformin cancer"

What's REAL:

  • Real MagenticBuilder orchestration
  • Real SearchAgent, JudgeAgent, HypothesisAgent, ReportAgent
  • Real manager-based coordination

5. Hypothesis Demo (LLM Required)

Demonstrates REAL mechanistic hypothesis generation.

uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's"
uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure"

What's REAL:

  • Real PubMed + Web search first
  • Real embedding-based deduplication
  • Real LLM generating Drug -> Target -> Pathway -> Effect chains
  • Real knowledge gap identification

6. Full-Stack Demo (LLM Required)

THE COMPLETE PIPELINE - All phases working together.

uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3

What's REAL:

  1. Real PubMed + ClinicalTrials + Europe PMC evidence collection
  2. Real embedding-based semantic deduplication
  3. Real LLM mechanistic hypothesis generation
  4. Real LLM evidence quality assessment
  5. Real LLM structured scientific report generation

Output: Publication-quality research report with validated citations.


API Key Requirements

Example LLM Required Keys
search_demo No Optional: NCBI_API_KEY
embeddings_demo No None
orchestrator_demo Yes OPENAI_API_KEY or ANTHROPIC_API_KEY
run_magentic Yes OPENAI_API_KEY (Magentic requires OpenAI)
hypothesis_demo Yes OPENAI_API_KEY or ANTHROPIC_API_KEY
full_stack_demo Yes OPENAI_API_KEY or ANTHROPIC_API_KEY

Architecture

User Query
    |
    v
[REAL Search] --> PubMed + ClinicalTrials + Europe PMC APIs
    |
    v
[REAL Embeddings] --> Actual sentence-transformers
    |
    v
[REAL Hypothesis] --> Actual LLM reasoning
    |
    v
[REAL Judge] --> Actual LLM assessment
    |
    +---> Need more? --> Loop back to Search
    |
    +---> Sufficient --> Continue
    |
    v
[REAL Report] --> Actual LLM synthesis
    |
    v
Publication-Quality Research Report

Why No Mocks?

"Authenticity is the feature."

Mocks belong in tests/unit/, not in demos. When you run these examples, you see:

  • Real papers from real databases
  • Real AI reasoning about real evidence
  • Real scientific hypotheses
  • Real research reports

This is what DeepCritical actually does. No fake data. No canned responses.