Spaces:
Running
Phase 5 Implementation Spec: Magentic Integration (Optional)
Goal: Upgrade orchestrator to use Microsoft Agent Framework's Magentic-One pattern. Philosophy: "Same API, Better Engine." Prerequisite: Phase 4 complete (MVP working end-to-end)
1. Why Magentic?
Magentic-One provides:
- LLM-powered manager that dynamically plans, selects agents, tracks progress
- Built-in stall detection and automatic replanning
- Checkpointing for pause/resume workflows
- Event streaming for real-time UI updates
- Multi-agent coordination with round limits and reset logic
This is NOT required for MVP. Only implement if time permits after Phase 4.
2. Architecture Alignment
Current Phase 4 Architecture
User Query
β
Orchestrator (while loop)
βββ SearchHandler.execute() β Evidence
βββ JudgeHandler.assess() β JudgeAssessment
βββ Loop/Synthesize decision
β
Research Report
Phase 5 Magentic Architecture
User Query
β
MagenticBuilder
βββ SearchAgent (wraps SearchHandler)
βββ JudgeAgent (wraps JudgeHandler)
βββ StandardMagenticManager (LLM coordinator)
β
Research Report (same output format)
Key Insight: We wrap existing handlers as AgentProtocol implementations. The domain logic stays the same.
3. Design for Seamless Integration
3.1 Protocol-Based Design (Phase 4 prep)
In Phase 4, define handlers using Protocols so they can be wrapped later:
# src/orchestrator.py (Phase 4)
from typing import Protocol, List
from src.utils.models import Evidence, SearchResult, JudgeAssessment
class SearchHandlerProtocol(Protocol):
"""Protocol for search handler - can be wrapped as Agent later."""
async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult:
...
class JudgeHandlerProtocol(Protocol):
"""Protocol for judge handler - can be wrapped as Agent later."""
async def assess(self, question: str, evidence: List[Evidence]) -> JudgeAssessment:
...
class OrchestratorProtocol(Protocol):
"""Protocol for orchestrator - allows swapping implementations."""
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
...
3.2 Facade Pattern
The Orchestrator class is a facade. In Phase 5, we create MagenticOrchestrator with the same interface:
# Phase 4: Simple orchestrator
orchestrator = Orchestrator(search_handler, judge_handler)
# Phase 5: Magentic orchestrator (SAME API)
orchestrator = MagenticOrchestrator(search_handler, judge_handler)
# Usage is identical
async for event in orchestrator.run("metformin alzheimer"):
print(event.to_markdown())
4. Phase 5 Implementation
4.1 Install Agent Framework
Add to pyproject.toml:
[project.optional-dependencies]
magentic = [
"agent-framework-core>=0.1.0",
]
4.2 Agent Wrappers (src/agents/search_agent.py)
Wrap SearchHandler as an AgentProtocol.
Note: AgentProtocol requires id, name, display_name, description, run, run_stream, and get_new_thread.
"""Search agent wrapper for Magentic integration."""
from typing import Any, AsyncIterable
from agent_framework import AgentProtocol, AgentRunResponse, AgentRunResponseUpdate, ChatMessage, Role, AgentThread
from src.tools.search_handler import SearchHandler
from src.utils.models import SearchResult
class SearchAgent:
"""Wraps SearchHandler as an AgentProtocol for Magentic."""
def __init__(self, search_handler: SearchHandler):
self._handler = search_handler
self._id = "search-agent"
self._name = "SearchAgent"
self._description = "Searches PubMed and web for drug repurposing evidence"
@property
def id(self) -> str:
return self._id
@property
def name(self) -> str | None:
return self._name
@property
def display_name(self) -> str:
return self._name
@property
def description(self) -> str | None:
return self._description
async def run(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AgentRunResponse:
"""Execute search based on the last user message."""
# Extract query from messages
query = ""
if isinstance(messages, list):
for msg in reversed(messages):
if isinstance(msg, ChatMessage) and msg.role == Role.USER and msg.text:
query = msg.text
break
elif isinstance(msg, str):
query = msg
break
elif isinstance(messages, str):
query = messages
if not query:
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text="No query provided")],
response_id="search-no-query",
)
# Execute search
result: SearchResult = await self._handler.execute(query, max_results_per_tool=10)
# Format response
evidence_text = "\n".join([
f"- [{e.citation.title}]({e.citation.url}): {e.content[:200]}..."
for e in result.evidence[:5]
])
response_text = f"Found {result.total_found} sources:\n\n{evidence_text}"
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
response_id=f"search-{result.total_found}",
additional_properties={"evidence": [e.model_dump() for e in result.evidence]},
)
async def run_stream(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AsyncIterable[AgentRunResponseUpdate]:
"""Streaming wrapper for search (search itself isn't streaming)."""
result = await self.run(messages, thread=thread, **kwargs)
# Yield single update with full result
yield AgentRunResponseUpdate(
messages=result.messages,
response_id=result.response_id
)
def get_new_thread(self, **kwargs: Any) -> AgentThread:
"""Create a new thread."""
return AgentThread(**kwargs)
4.3 Judge Agent Wrapper (src/agents/judge_agent.py)
"""Judge agent wrapper for Magentic integration."""
from typing import Any, List, AsyncIterable
from agent_framework import AgentProtocol, AgentRunResponse, AgentRunResponseUpdate, ChatMessage, Role, AgentThread
from src.agent_factory.judges import JudgeHandler
from src.utils.models import Evidence, JudgeAssessment
class JudgeAgent:
"""Wraps JudgeHandler as an AgentProtocol for Magentic."""
def __init__(self, judge_handler: JudgeHandler, evidence_store: dict[str, List[Evidence]]):
self._handler = judge_handler
self._evidence_store = evidence_store # Shared state for evidence
self._id = "judge-agent"
self._name = "JudgeAgent"
self._description = "Evaluates evidence quality and determines if sufficient for synthesis"
@property
def id(self) -> str:
return self._id
@property
def name(self) -> str | None:
return self._name
@property
def display_name(self) -> str:
return self._name
@property
def description(self) -> str | None:
return self._description
async def run(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AgentRunResponse:
"""Assess evidence quality."""
# Extract original question from messages
question = ""
if isinstance(messages, list):
for msg in reversed(messages):
if isinstance(msg, ChatMessage) and msg.role == Role.USER and msg.text:
question = msg.text
break
elif isinstance(msg, str):
question = msg
break
elif isinstance(messages, str):
question = messages
# Get evidence from shared store
evidence = self._evidence_store.get("current", [])
# Assess
assessment: JudgeAssessment = await self._handler.assess(question, evidence)
# Format response
response_text = f"""## Assessment
**Sufficient**: {assessment.sufficient}
**Confidence**: {assessment.confidence:.0%}
**Recommendation**: {assessment.recommendation}
### Scores
- Mechanism: {assessment.details.mechanism_score}/10
- Clinical: {assessment.details.clinical_evidence_score}/10
### Reasoning
{assessment.reasoning}
"""
if assessment.next_search_queries:
response_text += f"\n### Next Queries\n" + "\n".join(
f"- {q}" for q in assessment.next_search_queries
)
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
response_id=f"judge-{assessment.recommendation}",
additional_properties={"assessment": assessment.model_dump()},
)
async def run_stream(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AsyncIterable[AgentRunResponseUpdate]:
"""Streaming wrapper for judge."""
result = await self.run(messages, thread=thread, **kwargs)
yield AgentRunResponseUpdate(
messages=result.messages,
response_id=result.response_id
)
def get_new_thread(self, **kwargs: Any) -> AgentThread:
"""Create a new thread."""
return AgentThread(**kwargs)
4.4 Magentic Orchestrator (src/orchestrator_magentic.py)
"""Magentic-based orchestrator for DeepCritical."""
from typing import AsyncGenerator, List
import structlog
from agent_framework import (
MagenticBuilder,
MagenticFinalResultEvent,
MagenticAgentMessageEvent,
MagenticOrchestratorMessageEvent,
MagenticAgentDeltaEvent,
WorkflowOutputEvent,
)
from agent_framework.openai import OpenAIChatClient
from src.agents.search_agent import SearchAgent
from src.agents.judge_agent import JudgeAgent
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import JudgeHandler
from src.utils.models import AgentEvent, Evidence
logger = structlog.get_logger()
class MagenticOrchestrator:
"""
Magentic-based orchestrator - same API as Orchestrator.
Uses Microsoft Agent Framework's MagenticBuilder for multi-agent coordination.
"""
def __init__(
self,
search_handler: SearchHandler,
judge_handler: JudgeHandler,
max_rounds: int = 10,
):
self._search_handler = search_handler
self._judge_handler = judge_handler
self._max_rounds = max_rounds
self._evidence_store: dict[str, List[Evidence]] = {"current": []}
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
"""
Run the Magentic workflow - same API as simple Orchestrator.
Yields AgentEvent objects for real-time UI updates.
"""
logger.info("Starting Magentic orchestrator", query=query)
yield AgentEvent(
type="started",
message=f"Starting research (Magentic mode): {query}",
iteration=0,
)
# Create agent wrappers
search_agent = SearchAgent(self._search_handler)
judge_agent = JudgeAgent(self._judge_handler, self._evidence_store)
# Build Magentic workflow
# Note: MagenticBuilder.participants takes named arguments for agent instances
workflow = (
MagenticBuilder()
.participants(
searcher=search_agent,
judge=judge_agent,
)
.with_standard_manager(
chat_client=OpenAIChatClient(),
max_round_count=self._max_rounds,
max_stall_count=3,
max_reset_count=2,
)
.build()
)
# Task instruction for the manager
task = f"""Research drug repurposing opportunities for: {query}
Instructions:
1. Use SearcherAgent to find evidence from PubMed and web
2. Use JudgeAgent to evaluate if evidence is sufficient
3. If JudgeAgent says "continue", search with refined queries
4. If JudgeAgent says "synthesize", provide final synthesis
5. Stop when synthesis is ready or max rounds reached
Focus on finding:
- Mechanism of action evidence
- Clinical/preclinical studies
- Specific drug candidates
"""
iteration = 0
try:
# workflow.run_stream returns an async generator of workflow events
async for event in workflow.run_stream(task):
if isinstance(event, MagenticOrchestratorMessageEvent):
# Manager events (planning, instruction, ledger)
message_text = event.message.text if event.message else ""
yield AgentEvent(
type="judging",
message=f"Manager ({event.kind}): {message_text[:100]}...",
iteration=iteration,
)
elif isinstance(event, MagenticAgentMessageEvent):
# Complete agent response
iteration += 1
agent_name = event.agent_id or "unknown"
msg_text = event.message.text if event.message else ""
if "search" in agent_name.lower():
# Check if we found evidence (based on SearchAgent logic)
# In a real implementation we might extract metadata
yield AgentEvent(
type="search_complete",
message=f"Search agent: {msg_text[:100]}...",
iteration=iteration,
)
elif "judge" in agent_name.lower():
yield AgentEvent(
type="judge_complete",
message=f"Judge agent: {msg_text[:100]}...",
iteration=iteration,
)
elif isinstance(event, MagenticFinalResultEvent):
# Final workflow result
final_text = event.message.text if event.message else "No result"
yield AgentEvent(
type="complete",
message=final_text,
data={"iterations": iteration},
iteration=iteration,
)
elif isinstance(event, MagenticAgentDeltaEvent):
# Streaming token chunks from agents (optional "typing" effect)
# Only emit if we have actual text content
if event.text:
yield AgentEvent(
type="streaming",
message=event.text,
data={"agent_id": event.agent_id},
iteration=iteration,
)
elif isinstance(event, WorkflowOutputEvent):
# Alternative final output event
if event.data:
yield AgentEvent(
type="complete",
message=str(event.data),
iteration=iteration,
)
except Exception as e:
logger.error("Magentic workflow failed", error=str(e))
yield AgentEvent(
type="error",
message=f"Workflow error: {str(e)}",
iteration=iteration,
)
4.5 Factory Pattern (src/orchestrator_factory.py)
Allow switching between implementations:
"""Factory for creating orchestrators."""
from typing import Literal
from src.orchestrator import Orchestrator
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import JudgeHandler
from src.utils.models import OrchestratorConfig
def create_orchestrator(
search_handler: SearchHandler,
judge_handler: JudgeHandler,
config: OrchestratorConfig | None = None,
mode: Literal["simple", "magentic"] = "simple",
):
"""
Create an orchestrator instance.
Args:
search_handler: The search handler
judge_handler: The judge handler
config: Optional configuration
mode: "simple" for Phase 4 loop, "magentic" for Phase 5 multi-agent
Returns:
Orchestrator instance (same interface regardless of mode)
"""
if mode == "magentic":
try:
from src.orchestrator_magentic import MagenticOrchestrator
return MagenticOrchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
max_rounds=config.max_iterations if config else 10,
)
except ImportError:
# Fallback to simple if agent-framework not installed
pass
return Orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
)
5. Directory Structure After Phase 5
src/
βββ app.py # Gradio UI (unchanged)
βββ orchestrator.py # Phase 4 simple orchestrator
βββ orchestrator_magentic.py # Phase 5 Magentic orchestrator
βββ orchestrator_factory.py # Factory to switch implementations
βββ agents/ # NEW: Agent wrappers
β βββ __init__.py
β βββ search_agent.py # SearchHandler as AgentProtocol
β βββ judge_agent.py # JudgeHandler as AgentProtocol
βββ agent_factory/
β βββ judges.py # JudgeHandler (unchanged)
βββ tools/
β βββ pubmed.py # PubMed tool (unchanged)
β βββ websearch.py # Web tool (unchanged)
β βββ search_handler.py # SearchHandler (unchanged)
βββ utils/
βββ models.py # Models (unchanged)
6. Implementation Checklist
- Ensure Phase 4 uses Protocol-based handler interfaces
- Add
agent-framework-coreto optional dependencies - Create
src/agents/directory - Implement
SearchAgentwrapper - Implement
JudgeAgentwrapper - Implement
MagenticOrchestrator - Implement
orchestrator_factory.py - Add tests for agent wrappers
- Test Magentic flow end-to-end
- Update
src/app.pyto use factory with mode toggle
7. Definition of Done
Phase 5 is COMPLETE when:
- All Phase 4 tests still pass (no regression)
MagenticOrchestratorhas same API asOrchestrator- Can switch between modes via factory:
# Simple mode (Phase 4)
orchestrator = create_orchestrator(search, judge, mode="simple")
# Magentic mode (Phase 5)
orchestrator = create_orchestrator(search, judge, mode="magentic")
# Same usage!
async for event in orchestrator.run("metformin alzheimer"):
print(event.to_markdown())
- UI works with both modes
- Graceful fallback if agent-framework not installed
8. When to Implement
Priority: LOW (optional enhancement)
Implement ONLY after:
- β Phase 1: Foundation
- β Phase 2: Search
- β Phase 3: Judge
- β Phase 4: Orchestrator + UI (MVP SHIPPED)
If hackathon deadline is approaching, SKIP Phase 5. Ship the MVP.
9. Benefits of This Design
- No breaking changes - Phase 4 code works unchanged
- Same API -
run()returnsAsyncGenerator[AgentEvent, None] - Gradual adoption - Optional dependency, factory fallback
- Testable - Each component can be tested independently
- Aligns with Tonic's vision - Uses Microsoft Agent Framework patterns
10. Reference
- Microsoft Agent Framework:
reference_repos/agent-framework/ - Magentic samples:
reference_repos/agent-framework/python/samples/getting_started/workflows/orchestration/magentic.py - AgentProtocol:
reference_repos/agent-framework/python/packages/core/agent_framework/_agents.py