|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
import time |
|
|
|
|
|
|
|
|
MODEL_NAME = "TheBloke/vicuna-7B-1.1-HF" |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", torch_dtype=torch.float16) |
|
|
|
|
|
chat_histories = {} |
|
|
PERSONALITY = "أنا NOVA AI 😎، كوميدي، مغربي، وودود. نفهم أي حاجة!" |
|
|
|
|
|
def chat_nova(user_id, message): |
|
|
start = time.time() |
|
|
if user_id not in chat_histories: |
|
|
chat_histories[user_id] = [] |
|
|
|
|
|
conversation = PERSONALITY + "\n" |
|
|
for q, a in chat_histories[user_id]: |
|
|
conversation += f"User: {q}\nNOVA AI: {a}\n" |
|
|
conversation += f"User: {message}\nNOVA AI:" |
|
|
|
|
|
inputs = tokenizer(conversation, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate(**inputs, max_new_tokens=200) |
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("NOVA AI:")[-1].strip() |
|
|
|
|
|
chat_histories[user_id].append((message, response)) |
|
|
if len(chat_histories[user_id]) > 10: |
|
|
chat_histories[user_id] = chat_histories[user_id][-10:] |
|
|
|
|
|
latency = round(time.time() - start, 2) |
|
|
return f"{response}\n\n(⏱ {latency}s)" |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("## NOVA AI Chat 💡\nشبيهة GPT-5، تجاوب سريع، كوميدية ومغربية.") |
|
|
user_id = gr.Textbox(label="ID المستخدم", value="user1") |
|
|
message = gr.Textbox(label="أدخل سؤالك") |
|
|
output = gr.Textbox(label="رد NOVA AI") |
|
|
send_btn = gr.Button("إرسال") |
|
|
send_btn.click(chat_nova, inputs=[user_id, message], outputs=output) |
|
|
|
|
|
demo.launch() |
|
|
|