Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,120 +1,21 @@
|
|
| 1 |
#################################################################################################
|
| 2 |
|
| 3 |
-
import subprocess
|
| 4 |
-
import sys
|
| 5 |
-
|
| 6 |
import spaces
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
import gradio as gr
|
| 10 |
from PIL import Image
|
| 11 |
import numpy as np
|
| 12 |
import cv2
|
| 13 |
-
import pypdfium2 as pdfium
|
| 14 |
-
from transformers import (
|
| 15 |
-
LightOnOCRForConditionalGeneration,
|
| 16 |
-
LightOnOCRProcessor,
|
| 17 |
-
)
|
| 18 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 19 |
import re
|
| 20 |
|
| 21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
if device == "cuda":
|
| 23 |
-
attn_implementation = "sdpa"
|
| 24 |
-
dtype = torch.bfloat16
|
| 25 |
-
else:
|
| 26 |
-
attn_implementation = "eager"
|
| 27 |
-
dtype = torch.float32
|
| 28 |
-
|
| 29 |
-
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 30 |
-
"lightonai/LightOnOCR-1B-1025",
|
| 31 |
-
attn_implementation=attn_implementation,
|
| 32 |
-
torch_dtype=dtype,
|
| 33 |
-
trust_remote_code=True,
|
| 34 |
-
).to(device).eval()
|
| 35 |
-
|
| 36 |
-
processor = LightOnOCRProcessor.from_pretrained(
|
| 37 |
-
"lightonai/LightOnOCR-1B-1025",
|
| 38 |
-
trust_remote_code=True,
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 42 |
-
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 43 |
-
ner_pipeline = pipeline(
|
| 44 |
-
"ner",
|
| 45 |
-
model=ner_model,
|
| 46 |
-
tokenizer=ner_tokenizer,
|
| 47 |
-
aggregation_strategy="simple",
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
| 51 |
-
width, height = page.get_size()
|
| 52 |
-
pixel_width = width * scale
|
| 53 |
-
pixel_height = height * scale
|
| 54 |
-
resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
|
| 55 |
-
target_scale = scale * resize_factor
|
| 56 |
-
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
|
| 57 |
-
|
| 58 |
-
def process_pdf(pdf_path, page_num=1):
|
| 59 |
-
pdf = pdfium.PdfDocument(pdf_path)
|
| 60 |
-
total_pages = len(pdf)
|
| 61 |
-
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
|
| 62 |
-
page = pdf[page_idx]
|
| 63 |
-
img = render_pdf_page(page)
|
| 64 |
-
pdf.close()
|
| 65 |
-
return img, total_pages, page_idx + 1
|
| 66 |
-
|
| 67 |
-
def clean_output_text(text):
|
| 68 |
-
markers_to_remove = ["system", "user", "assistant"]
|
| 69 |
-
lines = text.split('\n')
|
| 70 |
-
cleaned_lines = []
|
| 71 |
-
for line in lines:
|
| 72 |
-
stripped = line.strip()
|
| 73 |
-
if stripped.lower() not in markers_to_remove:
|
| 74 |
-
cleaned_lines.append(line)
|
| 75 |
-
cleaned = '\n'.join(cleaned_lines).strip()
|
| 76 |
-
if "assistant" in text.lower():
|
| 77 |
-
parts = text.split("assistant", 1)
|
| 78 |
-
if len(parts) > 1:
|
| 79 |
-
cleaned = parts[1].strip()
|
| 80 |
-
return cleaned
|
| 81 |
-
|
| 82 |
-
def preprocess_image_for_ocr(image):
|
| 83 |
-
image_rgb = image.convert("RGB")
|
| 84 |
-
img_np = np.array(image_rgb)
|
| 85 |
-
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 86 |
-
adaptive_threshold = cv2.adaptiveThreshold(
|
| 87 |
-
gray,
|
| 88 |
-
255,
|
| 89 |
-
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 90 |
-
cv2.THRESH_BINARY,
|
| 91 |
-
85,
|
| 92 |
-
35,
|
| 93 |
-
)
|
| 94 |
-
preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 95 |
-
return preprocessed_pil
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
def extract_medication_lines(text):
|
| 100 |
-
"""
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
Handles case-insensitivity and abbreviations like T., C., tab., cap. etc.
|
| 104 |
-
"""
|
| 105 |
-
# "|" means OR. (?:...) is a non-capturing group.
|
| 106 |
-
pattern = r"""^\s* # Leading spaces allowed
|
| 107 |
-
(
|
| 108 |
-
T\.?|TAB\.?|TABLET # T., T, TAB, TAB., TABLET
|
| 109 |
-
|C\.?|CAP\.?|CAPSULE # C., C, CAP, CAP., CAPSULE
|
| 110 |
|SYRUP|SYP
|
| 111 |
|ORAL
|
| 112 |
-
|INJ\.?|INJECTION
|
| 113 |
|OINTMENT|DROPS|PATCH|SOL\.?|SOLUTION
|
| 114 |
-
)
|
| 115 |
-
\s+[A-Z0-9 \-\(\)/,.]+ # Name/dose/other info (at least one space/letter after the pattern)
|
| 116 |
-
"""
|
| 117 |
-
# Compile with re.IGNORECASE and re.VERBOSE for readability
|
| 118 |
med_regex = re.compile(pattern, re.IGNORECASE | re.VERBOSE)
|
| 119 |
meds = []
|
| 120 |
for line in text.split('\n'):
|
|
@@ -123,30 +24,51 @@ def extract_medication_lines(text):
|
|
| 123 |
meds.append(line)
|
| 124 |
return '\n'.join(meds)
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
if use_ner:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
if word.startswith("##") and meds:
|
| 139 |
-
meds[-1] += word[2:]
|
| 140 |
-
else:
|
| 141 |
-
meds.append(word)
|
| 142 |
-
return ", ".join(set(meds)) if meds else "None detected"
|
| 143 |
-
else:
|
| 144 |
-
return extract_medication_lines(text) or "None detected"
|
| 145 |
|
| 146 |
-
@spaces.GPU
|
| 147 |
-
def extract_text_from_image(image, temperature=0.2):
|
| 148 |
-
"""OCR with adaptive thresholding."""
|
| 149 |
processed_img = preprocess_image_for_ocr(image)
|
|
|
|
| 150 |
chat = [
|
| 151 |
{
|
| 152 |
"role": "user",
|
|
@@ -162,15 +84,13 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 162 |
return_dict=True,
|
| 163 |
return_tensors="pt",
|
| 164 |
)
|
| 165 |
-
|
| 166 |
inputs = {
|
| 167 |
-
k: (
|
| 168 |
-
v.to(device=device, dtype=dtype)
|
| 169 |
if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
| 170 |
else v.to(device)
|
| 171 |
if isinstance(v, torch.Tensor)
|
| 172 |
-
else v
|
| 173 |
-
)
|
| 174 |
for k, v in inputs.items()
|
| 175 |
}
|
| 176 |
generation_kwargs = dict(
|
|
@@ -182,68 +102,40 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 182 |
)
|
| 183 |
with torch.no_grad():
|
| 184 |
outputs = ocr_model.generate(**generation_kwargs)
|
|
|
|
| 185 |
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 186 |
-
cleaned_text =
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
def process_input(file_input, temperature, page_num, extraction_mode):
|
| 190 |
if file_input is None:
|
| 191 |
-
yield "Please upload an image or PDF first.",
|
| 192 |
return
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
image_to_process
|
| 195 |
-
|
| 196 |
-
slider_value = page_num
|
| 197 |
-
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 198 |
-
|
| 199 |
-
if file_path.lower().endswith(".pdf"):
|
| 200 |
-
try:
|
| 201 |
-
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
|
| 202 |
-
page_info = f"Processing page {actual_page} of {total_pages}"
|
| 203 |
-
slider_value = actual_page
|
| 204 |
-
except Exception as e:
|
| 205 |
-
msg = f"Error processing PDF: {str(e)}"
|
| 206 |
-
yield msg, "", msg, "", None, slider_value
|
| 207 |
-
return
|
| 208 |
-
else:
|
| 209 |
-
try:
|
| 210 |
-
image_to_process = Image.open(file_path)
|
| 211 |
-
page_info = "Processing image"
|
| 212 |
-
except Exception as e:
|
| 213 |
-
msg = f"Error opening image: {str(e)}"
|
| 214 |
-
yield msg, "", msg, "", None, slider_value
|
| 215 |
-
return
|
| 216 |
-
|
| 217 |
-
use_ner = extraction_mode == "Regex" #"Clinical NER"
|
| 218 |
-
try:
|
| 219 |
-
for cleaned_text, raw_md, processed_img in extract_text_from_image(
|
| 220 |
-
image_to_process, temperature
|
| 221 |
-
):
|
| 222 |
-
meds_out = extract_meds(cleaned_text, use_ner)
|
| 223 |
-
yield cleaned_text, meds_out, raw_md, page_info, processed_img, slider_value
|
| 224 |
-
except Exception as e:
|
| 225 |
-
error_msg = f"Error during text extraction: {str(e)}"
|
| 226 |
-
yield error_msg, "", error_msg, page_info, image_to_process, slider_value
|
| 227 |
-
|
| 228 |
-
def update_slider(file_input):
|
| 229 |
-
if file_input is None:
|
| 230 |
-
return gr.update(maximum=20, value=1)
|
| 231 |
-
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 232 |
-
if file_path.lower().endswith('.pdf'):
|
| 233 |
-
try:
|
| 234 |
-
pdf = pdfium.PdfDocument(file_path)
|
| 235 |
-
total_pages = len(pdf)
|
| 236 |
-
pdf.close()
|
| 237 |
-
return gr.update(maximum=total_pages, value=1)
|
| 238 |
-
except:
|
| 239 |
-
return gr.update(maximum=20, value=1)
|
| 240 |
-
else:
|
| 241 |
-
return gr.update(maximum=1, value=1)
|
| 242 |
|
| 243 |
with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
|
| 244 |
file_input = gr.File(
|
| 245 |
-
label="🖼️ Upload Image
|
| 246 |
-
file_types=[".
|
| 247 |
type="filepath"
|
| 248 |
)
|
| 249 |
temperature = gr.Slider(
|
|
@@ -253,24 +145,12 @@ with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo
|
|
| 253 |
step=0.05,
|
| 254 |
label="Temperature"
|
| 255 |
)
|
| 256 |
-
page_slider = gr.Slider(
|
| 257 |
-
minimum=1, maximum=20, value=1, step=1,
|
| 258 |
-
label="Page Number (PDF only)",
|
| 259 |
-
interactive=True
|
| 260 |
-
)
|
| 261 |
extraction_mode = gr.Radio(
|
| 262 |
choices=["Clinical NER", "Regex"],
|
| 263 |
value="Regex",
|
| 264 |
label="Extraction Method",
|
| 265 |
info="Clinical NER uses ML, Regex uses rules"
|
| 266 |
)
|
| 267 |
-
output_text = gr.Textbox(
|
| 268 |
-
label="📝 Extracted Text",
|
| 269 |
-
lines=4,
|
| 270 |
-
max_lines=10,
|
| 271 |
-
interactive=False,
|
| 272 |
-
show_copy_button=True
|
| 273 |
-
)
|
| 274 |
medicines_output = gr.Textbox(
|
| 275 |
label="💊 Extracted Medicines/Drugs",
|
| 276 |
placeholder="Medicine/drug names will appear here...",
|
|
@@ -279,34 +159,16 @@ with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo
|
|
| 279 |
interactive=False,
|
| 280 |
show_copy_button=True
|
| 281 |
)
|
| 282 |
-
raw_output = gr.Textbox(
|
| 283 |
-
label="Raw Model Output",
|
| 284 |
-
lines=2,
|
| 285 |
-
max_lines=5,
|
| 286 |
-
interactive=False
|
| 287 |
-
)
|
| 288 |
-
page_info = gr.Markdown(
|
| 289 |
-
value="" # Info of PDF page
|
| 290 |
-
)
|
| 291 |
rendered_image = gr.Image(
|
| 292 |
-
label="Processed Image (Thresholded for OCR)",
|
| 293 |
interactive=False
|
| 294 |
)
|
| 295 |
-
num_pages = gr.Number(
|
| 296 |
-
value=1, label="Current Page (slider)", visible=False
|
| 297 |
-
)
|
| 298 |
submit_btn = gr.Button("Extract Medicines", variant="primary")
|
| 299 |
|
| 300 |
submit_btn.click(
|
| 301 |
fn=process_input,
|
| 302 |
-
inputs=[file_input, temperature,
|
| 303 |
-
outputs=[
|
| 304 |
-
)
|
| 305 |
-
|
| 306 |
-
file_input.change(
|
| 307 |
-
fn=update_slider,
|
| 308 |
-
inputs=[file_input],
|
| 309 |
-
outputs=[page_slider]
|
| 310 |
)
|
| 311 |
|
| 312 |
if __name__ == "__main__":
|
|
|
|
| 1 |
#################################################################################################
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
import spaces
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import re
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def extract_medication_lines(text):
|
| 11 |
+
pattern = r"""^\s*(
|
| 12 |
+
T\.?|TAB\.?|TABLET
|
| 13 |
+
|C\.?|CAP\.?|CAPSULE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|SYRUP|SYP
|
| 15 |
|ORAL
|
| 16 |
+
|INJ\.?|INJECTION
|
| 17 |
|OINTMENT|DROPS|PATCH|SOL\.?|SOLUTION
|
| 18 |
+
)\s+[A-Z0-9 \-\(\)/,.]+"""
|
|
|
|
|
|
|
|
|
|
| 19 |
med_regex = re.compile(pattern, re.IGNORECASE | re.VERBOSE)
|
| 20 |
meds = []
|
| 21 |
for line in text.split('\n'):
|
|
|
|
| 24 |
meds.append(line)
|
| 25 |
return '\n'.join(meds)
|
| 26 |
|
| 27 |
+
def preprocess_image_for_ocr(image):
|
| 28 |
+
image_rgb = image.convert("RGB")
|
| 29 |
+
img_np = np.array(image_rgb)
|
| 30 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 31 |
+
adaptive_threshold = cv2.adaptiveThreshold(
|
| 32 |
+
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 85,35,
|
| 33 |
+
)
|
| 34 |
+
preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 35 |
+
return preprocessed_pil
|
| 36 |
+
|
| 37 |
+
@spaces.GPU
|
| 38 |
+
def extract_text_from_image(image, temperature=0.2, use_ner=False):
|
| 39 |
+
# Import and load within GPU context!
|
| 40 |
+
import torch
|
| 41 |
+
from transformers import (
|
| 42 |
+
LightOnOCRForConditionalGeneration,
|
| 43 |
+
LightOnOCRProcessor,
|
| 44 |
+
AutoTokenizer, AutoModelForTokenClassification, pipeline,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
+
attn_implementation = "sdpa" if device == "cuda" else "eager"
|
| 49 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 50 |
|
| 51 |
+
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 52 |
+
"lightonai/LightOnOCR-1B-1025",
|
| 53 |
+
attn_implementation=attn_implementation,
|
| 54 |
+
torch_dtype=dtype,
|
| 55 |
+
trust_remote_code=True,
|
| 56 |
+
).to(device).eval()
|
| 57 |
+
|
| 58 |
+
processor = LightOnOCRProcessor.from_pretrained(
|
| 59 |
+
"lightonai/LightOnOCR-1B-1025",
|
| 60 |
+
trust_remote_code=True,
|
| 61 |
+
)
|
| 62 |
+
# NER only if requested
|
| 63 |
if use_ner:
|
| 64 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 65 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 66 |
+
ner_pipeline = pipeline(
|
| 67 |
+
"ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple"
|
| 68 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
processed_img = preprocess_image_for_ocr(image)
|
| 71 |
+
|
| 72 |
chat = [
|
| 73 |
{
|
| 74 |
"role": "user",
|
|
|
|
| 84 |
return_dict=True,
|
| 85 |
return_tensors="pt",
|
| 86 |
)
|
| 87 |
+
|
| 88 |
inputs = {
|
| 89 |
+
k: (v.to(device=device, dtype=dtype)
|
|
|
|
| 90 |
if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
| 91 |
else v.to(device)
|
| 92 |
if isinstance(v, torch.Tensor)
|
| 93 |
+
else v)
|
|
|
|
| 94 |
for k, v in inputs.items()
|
| 95 |
}
|
| 96 |
generation_kwargs = dict(
|
|
|
|
| 102 |
)
|
| 103 |
with torch.no_grad():
|
| 104 |
outputs = ocr_model.generate(**generation_kwargs)
|
| 105 |
+
|
| 106 |
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 107 |
+
cleaned_text = output_text.strip()
|
| 108 |
+
# Extract medicines
|
| 109 |
+
if use_ner:
|
| 110 |
+
entities = ner_pipeline(cleaned_text)
|
| 111 |
+
meds = []
|
| 112 |
+
for ent in entities:
|
| 113 |
+
if ent["entity_group"] == "treatment":
|
| 114 |
+
word = ent["word"]
|
| 115 |
+
if word.startswith("##") and meds:
|
| 116 |
+
meds[-1] += word[2:]
|
| 117 |
+
else:
|
| 118 |
+
meds.append(word)
|
| 119 |
+
result_meds = ", ".join(set(meds)) if meds else "None detected"
|
| 120 |
+
else:
|
| 121 |
+
result_meds = extract_medication_lines(cleaned_text) or "None detected"
|
| 122 |
+
|
| 123 |
+
yield result_meds, processed_img # Only medicines and processed image
|
| 124 |
|
| 125 |
def process_input(file_input, temperature, page_num, extraction_mode):
|
| 126 |
if file_input is None:
|
| 127 |
+
yield "Please upload an image or PDF first.", None
|
| 128 |
return
|
| 129 |
+
image_to_process = Image.open(file_input) if not str(file_input).lower().endswith(".pdf") else None # simplify to image only
|
| 130 |
+
use_ner = extraction_mode == "Clinical NER"
|
| 131 |
|
| 132 |
+
for meds_out, processed_img in extract_text_from_image(image_to_process, temperature, use_ner):
|
| 133 |
+
yield meds_out, processed_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
|
| 136 |
file_input = gr.File(
|
| 137 |
+
label="🖼️ Upload Image",
|
| 138 |
+
file_types=[".png", ".jpg", ".jpeg"],
|
| 139 |
type="filepath"
|
| 140 |
)
|
| 141 |
temperature = gr.Slider(
|
|
|
|
| 145 |
step=0.05,
|
| 146 |
label="Temperature"
|
| 147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
extraction_mode = gr.Radio(
|
| 149 |
choices=["Clinical NER", "Regex"],
|
| 150 |
value="Regex",
|
| 151 |
label="Extraction Method",
|
| 152 |
info="Clinical NER uses ML, Regex uses rules"
|
| 153 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
medicines_output = gr.Textbox(
|
| 155 |
label="💊 Extracted Medicines/Drugs",
|
| 156 |
placeholder="Medicine/drug names will appear here...",
|
|
|
|
| 159 |
interactive=False,
|
| 160 |
show_copy_button=True
|
| 161 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
rendered_image = gr.Image(
|
| 163 |
+
label="Processed Image (Adaptive Thresholded for OCR)",
|
| 164 |
interactive=False
|
| 165 |
)
|
|
|
|
|
|
|
|
|
|
| 166 |
submit_btn = gr.Button("Extract Medicines", variant="primary")
|
| 167 |
|
| 168 |
submit_btn.click(
|
| 169 |
fn=process_input,
|
| 170 |
+
inputs=[file_input, temperature, 1, extraction_mode], # page_num not used for image, set to 1
|
| 171 |
+
outputs=[medicines_output, rendered_image]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|