Spaces:
Running
Running
File size: 8,096 Bytes
ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 bf40f3b ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 bf40f3b ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 bf40f3b 08c01a4 ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 bf40f3b ca4a9e5 bf40f3b ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 bf40f3b 08c01a4 bf40f3b 08c01a4 ca4a9e5 bf40f3b ca4a9e5 bf40f3b 08c01a4 ca4a9e5 bf40f3b ca4a9e5 bf40f3b ca4a9e5 bf40f3b ca4a9e5 08c01a4 bf40f3b 08c01a4 ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 bf40f3b ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 08c01a4 ca4a9e5 08c01a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
"""
Hugging Face Spaces App for Kolam AI Generator
Enhanced with StyleConditionedGenerator for more variety
"""
import gradio as gr
import torch
import numpy as np
from PIL import Image
from pathlib import Path
import sys
import matplotlib.cm as cm # for color mapping
# Add project paths
sys.path.insert(0, str(Path(__file__).parent.parent))
sys.path.insert(0, str(Path(__file__).parent.parent / 'models'))
from models.gan_generator import StyleConditionedGenerator
from models.gan_discriminator import KolamDiscriminator
from utils.metrics import KolamDesignMetrics
class KolamAIGenerator:
def __init__(self):
"""Initialize the Kolam AI Generator."""
self.generator = None
self.discriminator = None
self.metrics = KolamDesignMetrics()
self.load_models()
def load_models(self):
"""Load the pre-trained models."""
try:
# Use StyleConditionedGenerator
self.generator = StyleConditionedGenerator(
noise_dim=100,
feature_dim=128,
style_dim=32,
output_channels=1,
image_size=64
)
self.discriminator = KolamDiscriminator(
input_channels=1,
image_size=64
)
# Try to load pretrained weights
weights_path = Path("models/generator.pth")
if weights_path.exists():
self.generator.load_state_dict(
torch.load(weights_path, map_location="cpu")
)
print("β
Loaded pretrained generator weights!")
else:
print("β οΈ No pretrained weights found, using untrained model.")
self.generator.eval()
self.discriminator.eval()
except Exception as e:
print(f"β Error loading models: {e}")
self.generator = StyleConditionedGenerator()
self.generator.eval()
def generate_kolam(self, complexity, symmetry, seed=None, use_color=True):
"""Generate a Kolam design with specified parameters."""
try:
# Seed control
if seed is not None:
torch.manual_seed(int(seed))
np.random.seed(int(seed))
else:
seed = np.random.randint(0, 100000)
torch.manual_seed(seed)
np.random.seed(seed)
# Random noise
noise = torch.randn(1, 100)
# Complexity tuning
if complexity == "Simple":
noise = noise * 0.5
elif complexity == "Medium":
noise = noise * 1.0 + torch.randn_like(noise) * 0.3
elif complexity == "Complex":
noise = noise * 1.5 + torch.randn_like(noise) * 0.5
# Random features & style vector for variety
features = torch.randn(1, 128)
style = torch.randn(1, 32)
# Generate image
with torch.no_grad():
generated_kolam = self.generator(noise, features, style)
# Normalize to [0,1]
kolam_image = generated_kolam.squeeze().cpu().numpy()
kolam_image = (kolam_image + 1) / 2
kolam_image = np.clip(kolam_image, 0, 1)
# Apply symmetry
if symmetry == "High":
kolam_image = self.enhance_symmetry(kolam_image)
# Convert to color
if use_color:
kolam_colored = cm.viridis(kolam_image)[:, :, :3]
kolam_pil = Image.fromarray((kolam_colored * 255).astype(np.uint8))
else:
kolam_pil = Image.fromarray((kolam_image * 255).astype(np.uint8), mode='L')
return kolam_pil
except Exception as e:
print(f"β Error generating Kolam: {e}")
return self.create_fallback_pattern()
def enhance_symmetry(self, image):
"""Enhance symmetry with mirroring + rotation."""
img_sym = (image + np.fliplr(image)) / 2
img_sym = (img_sym + np.flipud(img_sym)) / 2
rotated = np.rot90(image)
img_sym = (img_sym + rotated) / 2
return np.clip(img_sym, 0, 1)
def create_fallback_pattern(self):
"""Fallback geometric pattern."""
size = 64
pattern = np.zeros((size, size), dtype=np.float32)
center = size // 2
for radius in range(5, center, 8):
y, x = np.ogrid[:size, :size]
mask = (x - center) ** 2 + (y - center) ** 2 <= radius ** 2
pattern[mask] = 1.0
return Image.fromarray((pattern * 255).astype(np.uint8), mode='L')
def analyze_quality(self, image):
"""Analyze the quality of the Kolam."""
try:
if isinstance(image, Image.Image):
image_array = np.array(image) / 255.0
else:
image_array = image
quality = self.metrics.calculate_overall_quality(image_array)
return {
"Overall Quality": f"{quality['overall_quality']:.3f}",
"Horizontal Symmetry": f"{quality['horizontal']:.3f}",
"Vertical Symmetry": f"{quality['vertical']:.3f}",
"Complexity": f"{quality['complexity']:.3f}",
"Balance": f"{quality['balance']:.3f}",
"Rhythm": f"{quality['rhythm']:.3f}"
}
except Exception as e:
print(f"β Error analyzing quality: {e}")
return {k: "N/A" for k in [
"Overall Quality", "Horizontal Symmetry",
"Vertical Symmetry", "Complexity",
"Balance", "Rhythm"
]}
# -------------------------
# Interface setup
# -------------------------
kolam_ai = KolamAIGenerator()
def generate_and_analyze(complexity, symmetry, seed):
kolam_image = kolam_ai.generate_kolam(complexity, symmetry, seed, use_color=True)
quality_metrics = kolam_ai.analyze_quality(kolam_image)
return kolam_image, quality_metrics
def create_interface():
css = """
.gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; }
.title { text-align: center; color: #2E86AB; margin-bottom: 20px; }
.description { text-align: center; color: #666; margin-bottom: 30px; }
"""
with gr.Blocks(css=css, title="Kolam AI Generator") as interface:
gr.HTML("""
<div class="title">
<h1>π¨ Kolam AI Generator</h1>
<p class="description">Generate beautiful, diverse Kolam designs using AI</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### ποΈ Controls")
complexity = gr.Dropdown(["Simple", "Medium", "Complex"], value="Medium", label="Pattern Complexity")
symmetry = gr.Dropdown(["Low", "Medium", "High"], value="Medium", label="Symmetry Level")
seed = gr.Number(value=None, label="Random Seed (Optional)")
generate_btn = gr.Button("π¨ Generate Kolam", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### πΌοΈ Generated Kolam")
output_image = gr.Image(label="Generated Design", type="pil", height=400)
gr.Markdown("### π Quality Analysis")
quality_output = gr.JSON(label="Design Quality Metrics", value={})
generate_btn.click(fn=generate_and_analyze, inputs=[complexity, symmetry, seed], outputs=[output_image, quality_output])
interface.load(fn=lambda: generate_and_analyze("Medium", "Medium", None), outputs=[output_image, quality_output])
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)
|