Rishab7310's picture
Update app.py
bf40f3b verified
"""
Hugging Face Spaces App for Kolam AI Generator
Enhanced with StyleConditionedGenerator for more variety
"""
import gradio as gr
import torch
import numpy as np
from PIL import Image
from pathlib import Path
import sys
import matplotlib.cm as cm # for color mapping
# Add project paths
sys.path.insert(0, str(Path(__file__).parent.parent))
sys.path.insert(0, str(Path(__file__).parent.parent / 'models'))
from models.gan_generator import StyleConditionedGenerator
from models.gan_discriminator import KolamDiscriminator
from utils.metrics import KolamDesignMetrics
class KolamAIGenerator:
def __init__(self):
"""Initialize the Kolam AI Generator."""
self.generator = None
self.discriminator = None
self.metrics = KolamDesignMetrics()
self.load_models()
def load_models(self):
"""Load the pre-trained models."""
try:
# Use StyleConditionedGenerator
self.generator = StyleConditionedGenerator(
noise_dim=100,
feature_dim=128,
style_dim=32,
output_channels=1,
image_size=64
)
self.discriminator = KolamDiscriminator(
input_channels=1,
image_size=64
)
# Try to load pretrained weights
weights_path = Path("models/generator.pth")
if weights_path.exists():
self.generator.load_state_dict(
torch.load(weights_path, map_location="cpu")
)
print("βœ… Loaded pretrained generator weights!")
else:
print("⚠️ No pretrained weights found, using untrained model.")
self.generator.eval()
self.discriminator.eval()
except Exception as e:
print(f"❌ Error loading models: {e}")
self.generator = StyleConditionedGenerator()
self.generator.eval()
def generate_kolam(self, complexity, symmetry, seed=None, use_color=True):
"""Generate a Kolam design with specified parameters."""
try:
# Seed control
if seed is not None:
torch.manual_seed(int(seed))
np.random.seed(int(seed))
else:
seed = np.random.randint(0, 100000)
torch.manual_seed(seed)
np.random.seed(seed)
# Random noise
noise = torch.randn(1, 100)
# Complexity tuning
if complexity == "Simple":
noise = noise * 0.5
elif complexity == "Medium":
noise = noise * 1.0 + torch.randn_like(noise) * 0.3
elif complexity == "Complex":
noise = noise * 1.5 + torch.randn_like(noise) * 0.5
# Random features & style vector for variety
features = torch.randn(1, 128)
style = torch.randn(1, 32)
# Generate image
with torch.no_grad():
generated_kolam = self.generator(noise, features, style)
# Normalize to [0,1]
kolam_image = generated_kolam.squeeze().cpu().numpy()
kolam_image = (kolam_image + 1) / 2
kolam_image = np.clip(kolam_image, 0, 1)
# Apply symmetry
if symmetry == "High":
kolam_image = self.enhance_symmetry(kolam_image)
# Convert to color
if use_color:
kolam_colored = cm.viridis(kolam_image)[:, :, :3]
kolam_pil = Image.fromarray((kolam_colored * 255).astype(np.uint8))
else:
kolam_pil = Image.fromarray((kolam_image * 255).astype(np.uint8), mode='L')
return kolam_pil
except Exception as e:
print(f"❌ Error generating Kolam: {e}")
return self.create_fallback_pattern()
def enhance_symmetry(self, image):
"""Enhance symmetry with mirroring + rotation."""
img_sym = (image + np.fliplr(image)) / 2
img_sym = (img_sym + np.flipud(img_sym)) / 2
rotated = np.rot90(image)
img_sym = (img_sym + rotated) / 2
return np.clip(img_sym, 0, 1)
def create_fallback_pattern(self):
"""Fallback geometric pattern."""
size = 64
pattern = np.zeros((size, size), dtype=np.float32)
center = size // 2
for radius in range(5, center, 8):
y, x = np.ogrid[:size, :size]
mask = (x - center) ** 2 + (y - center) ** 2 <= radius ** 2
pattern[mask] = 1.0
return Image.fromarray((pattern * 255).astype(np.uint8), mode='L')
def analyze_quality(self, image):
"""Analyze the quality of the Kolam."""
try:
if isinstance(image, Image.Image):
image_array = np.array(image) / 255.0
else:
image_array = image
quality = self.metrics.calculate_overall_quality(image_array)
return {
"Overall Quality": f"{quality['overall_quality']:.3f}",
"Horizontal Symmetry": f"{quality['horizontal']:.3f}",
"Vertical Symmetry": f"{quality['vertical']:.3f}",
"Complexity": f"{quality['complexity']:.3f}",
"Balance": f"{quality['balance']:.3f}",
"Rhythm": f"{quality['rhythm']:.3f}"
}
except Exception as e:
print(f"❌ Error analyzing quality: {e}")
return {k: "N/A" for k in [
"Overall Quality", "Horizontal Symmetry",
"Vertical Symmetry", "Complexity",
"Balance", "Rhythm"
]}
# -------------------------
# Interface setup
# -------------------------
kolam_ai = KolamAIGenerator()
def generate_and_analyze(complexity, symmetry, seed):
kolam_image = kolam_ai.generate_kolam(complexity, symmetry, seed, use_color=True)
quality_metrics = kolam_ai.analyze_quality(kolam_image)
return kolam_image, quality_metrics
def create_interface():
css = """
.gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; }
.title { text-align: center; color: #2E86AB; margin-bottom: 20px; }
.description { text-align: center; color: #666; margin-bottom: 30px; }
"""
with gr.Blocks(css=css, title="Kolam AI Generator") as interface:
gr.HTML("""
<div class="title">
<h1>🎨 Kolam AI Generator</h1>
<p class="description">Generate beautiful, diverse Kolam designs using AI</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸŽ›οΈ Controls")
complexity = gr.Dropdown(["Simple", "Medium", "Complex"], value="Medium", label="Pattern Complexity")
symmetry = gr.Dropdown(["Low", "Medium", "High"], value="Medium", label="Symmetry Level")
seed = gr.Number(value=None, label="Random Seed (Optional)")
generate_btn = gr.Button("🎨 Generate Kolam", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### πŸ–ΌοΈ Generated Kolam")
output_image = gr.Image(label="Generated Design", type="pil", height=400)
gr.Markdown("### πŸ“Š Quality Analysis")
quality_output = gr.JSON(label="Design Quality Metrics", value={})
generate_btn.click(fn=generate_and_analyze, inputs=[complexity, symmetry, seed], outputs=[output_image, quality_output])
interface.load(fn=lambda: generate_and_analyze("Medium", "Medium", None), outputs=[output_image, quality_output])
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)