Spaces:
Running
Running
Update models/gan_generator.py
Browse files- models/gan_generator.py +37 -110
models/gan_generator.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
GAN Generator
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
|
@@ -9,10 +9,7 @@ import torch.nn.functional as F
|
|
| 9 |
|
| 10 |
|
| 11 |
class KolamGenerator(nn.Module):
|
| 12 |
-
"""
|
| 13 |
-
Generator network for creating Kolam designs.
|
| 14 |
-
Takes random noise and optional style features as input.
|
| 15 |
-
"""
|
| 16 |
|
| 17 |
def __init__(self, noise_dim=100, feature_dim=128, output_channels=1, image_size=64):
|
| 18 |
super(KolamGenerator, self).__init__()
|
|
@@ -20,174 +17,104 @@ class KolamGenerator(nn.Module):
|
|
| 20 |
self.noise_dim = noise_dim
|
| 21 |
self.feature_dim = feature_dim
|
| 22 |
self.image_size = image_size
|
| 23 |
-
|
| 24 |
-
# Calculate the starting size after upsampling
|
| 25 |
-
# Assuming we start from 4x4 and upsample to 64x64
|
| 26 |
self.start_size = 4
|
| 27 |
-
self.num_upsamples = int(torch.log2(torch.tensor(image_size
|
| 28 |
|
| 29 |
-
# Input projection
|
| 30 |
self.input_projection = nn.Linear(noise_dim + feature_dim, 256 * self.start_size * self.start_size)
|
| 31 |
|
| 32 |
-
# Upsampling
|
| 33 |
-
self.upsample_layers = nn.ModuleList()
|
| 34 |
-
self.conv_layers = nn.ModuleList()
|
| 35 |
-
self.bn_layers = nn.ModuleList()
|
| 36 |
-
|
| 37 |
-
# Build upsampling blocks
|
| 38 |
in_channels = 256
|
| 39 |
for i in range(self.num_upsamples):
|
| 40 |
out_channels = in_channels // 2 if i < self.num_upsamples - 1 else 64
|
| 41 |
-
|
| 42 |
-
self.
|
| 43 |
-
kernel_size=4, stride=2, padding=1))
|
| 44 |
-
self.conv_layers.append(nn.Conv2d(out_channels, out_channels,
|
| 45 |
-
kernel_size=3, padding=1))
|
| 46 |
self.bn_layers.append(nn.BatchNorm2d(out_channels))
|
| 47 |
-
|
| 48 |
in_channels = out_channels
|
| 49 |
|
| 50 |
-
# Final output
|
| 51 |
-
self.final_conv = nn.Conv2d(64, output_channels,
|
| 52 |
-
|
| 53 |
def forward(self, noise, features=None):
|
| 54 |
-
"""
|
| 55 |
-
Generate Kolam images from noise and optional features.
|
| 56 |
-
|
| 57 |
-
Args:
|
| 58 |
-
noise: Random noise tensor of shape (batch_size, noise_dim)
|
| 59 |
-
features: Optional feature tensor of shape (batch_size, feature_dim)
|
| 60 |
-
|
| 61 |
-
Returns:
|
| 62 |
-
Generated images of shape (batch_size, 1, image_size, image_size)
|
| 63 |
-
"""
|
| 64 |
batch_size = noise.size(0)
|
| 65 |
-
|
| 66 |
-
# Combine noise and features
|
| 67 |
if features is not None:
|
| 68 |
x = torch.cat([noise, features], dim=1)
|
| 69 |
else:
|
| 70 |
-
# If no features provided, use zero features
|
| 71 |
zero_features = torch.zeros(batch_size, self.feature_dim, device=noise.device)
|
| 72 |
x = torch.cat([noise, zero_features], dim=1)
|
| 73 |
|
| 74 |
-
# Project to initial feature map
|
| 75 |
x = self.input_projection(x)
|
| 76 |
x = x.view(batch_size, 256, self.start_size, self.start_size)
|
| 77 |
|
| 78 |
-
# Upsample and refine
|
| 79 |
for i in range(self.num_upsamples):
|
| 80 |
x = self.upsample_layers[i](x)
|
| 81 |
x = self.bn_layers[i](x)
|
| 82 |
x = F.relu(x)
|
| 83 |
-
|
| 84 |
x = self.conv_layers[i](x)
|
| 85 |
x = self.bn_layers[i](x)
|
| 86 |
x = F.relu(x)
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
x = self.final_conv(x)
|
| 90 |
-
x = torch.tanh(x) # Output in range [-1, 1]
|
| 91 |
-
|
| 92 |
-
return x
|
| 93 |
-
|
| 94 |
-
def generate(self, num_samples=1, features=None, device='cpu'):
|
| 95 |
-
"""
|
| 96 |
-
Generate samples without gradients (for inference).
|
| 97 |
-
|
| 98 |
-
Args:
|
| 99 |
-
num_samples: Number of samples to generate
|
| 100 |
-
features: Optional feature tensor
|
| 101 |
-
device: Device to generate on
|
| 102 |
-
|
| 103 |
-
Returns:
|
| 104 |
-
Generated images
|
| 105 |
-
"""
|
| 106 |
-
self.eval()
|
| 107 |
-
with torch.no_grad():
|
| 108 |
-
noise = torch.randn(num_samples, self.noise_dim, device=device)
|
| 109 |
-
return self.forward(noise, features)
|
| 110 |
|
| 111 |
|
| 112 |
class StyleConditionedGenerator(KolamGenerator):
|
| 113 |
-
"""
|
| 114 |
-
Style-conditioned generator that can generate Kolam designs
|
| 115 |
-
in specific styles based on input features.
|
| 116 |
-
"""
|
| 117 |
|
| 118 |
-
def __init__(self, noise_dim=100, feature_dim=128, style_dim=32,
|
| 119 |
-
output_channels=1, image_size=64):
|
| 120 |
super().__init__(noise_dim, feature_dim, output_channels, image_size)
|
| 121 |
-
|
| 122 |
-
# Style embedding layer
|
| 123 |
self.style_embedding = nn.Sequential(
|
| 124 |
nn.Linear(style_dim, 64),
|
| 125 |
nn.ReLU(),
|
| 126 |
nn.Linear(64, 128)
|
| 127 |
)
|
| 128 |
-
|
| 129 |
-
# Update input projection to include style
|
| 130 |
-
self.input_projection = nn.Linear(noise_dim + feature_dim + 128,
|
| 131 |
-
256 * self.start_size * self.start_size)
|
| 132 |
|
| 133 |
def forward(self, noise, features=None, style=None):
|
| 134 |
-
"""
|
| 135 |
-
Generate with style conditioning.
|
| 136 |
-
|
| 137 |
-
Args:
|
| 138 |
-
noise: Random noise
|
| 139 |
-
features: Design features
|
| 140 |
-
style: Style vector
|
| 141 |
-
"""
|
| 142 |
batch_size = noise.size(0)
|
| 143 |
-
|
| 144 |
-
# Process style
|
| 145 |
if style is not None:
|
| 146 |
style_embed = self.style_embedding(style)
|
| 147 |
else:
|
| 148 |
style_embed = torch.zeros(batch_size, 128, device=noise.device)
|
| 149 |
|
| 150 |
-
# Combine all inputs
|
| 151 |
if features is not None:
|
| 152 |
x = torch.cat([noise, features, style_embed], dim=1)
|
| 153 |
else:
|
| 154 |
zero_features = torch.zeros(batch_size, self.feature_dim, device=noise.device)
|
| 155 |
x = torch.cat([noise, zero_features, style_embed], dim=1)
|
| 156 |
|
| 157 |
-
# Continue with parent forward pass
|
| 158 |
x = self.input_projection(x)
|
| 159 |
x = x.view(batch_size, 256, self.start_size, self.start_size)
|
| 160 |
|
| 161 |
-
# Upsample and refine
|
| 162 |
for i in range(self.num_upsamples):
|
| 163 |
x = self.upsample_layers[i](x)
|
| 164 |
x = self.bn_layers[i](x)
|
| 165 |
x = F.relu(x)
|
| 166 |
-
|
| 167 |
x = self.conv_layers[i](x)
|
| 168 |
x = self.bn_layers[i](x)
|
| 169 |
x = F.relu(x)
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
if __name__ == "__main__":
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
features = torch.randn(4, 128) # Batch of 4, 128-dim features
|
| 183 |
-
|
| 184 |
-
generated = generator(noise, features)
|
| 185 |
-
print(f"Noise shape: {noise.shape}")
|
| 186 |
-
print(f"Features shape: {features.shape}")
|
| 187 |
-
print(f"Generated shape: {generated.shape}")
|
| 188 |
-
|
| 189 |
-
# Test style-conditioned generator
|
| 190 |
-
style_gen = StyleConditionedGenerator()
|
| 191 |
-
style = torch.randn(4, 32)
|
| 192 |
-
style_generated = style_gen(noise, features, style)
|
| 193 |
-
print(f"Style-generated shape: {style_generated.shape}")
|
|
|
|
| 1 |
"""
|
| 2 |
+
Enhanced GAN Generator for Kolam designs.
|
| 3 |
+
Adds style-conditioning and more diverse outputs.
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class KolamGenerator(nn.Module):
|
| 12 |
+
"""Base generator network for Kolam designs."""
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def __init__(self, noise_dim=100, feature_dim=128, output_channels=1, image_size=64):
|
| 15 |
super(KolamGenerator, self).__init__()
|
|
|
|
| 17 |
self.noise_dim = noise_dim
|
| 18 |
self.feature_dim = feature_dim
|
| 19 |
self.image_size = image_size
|
|
|
|
|
|
|
|
|
|
| 20 |
self.start_size = 4
|
| 21 |
+
self.num_upsamples = int(torch.log2(torch.tensor(image_size // self.start_size)).item())
|
| 22 |
|
| 23 |
+
# Input projection
|
| 24 |
self.input_projection = nn.Linear(noise_dim + feature_dim, 256 * self.start_size * self.start_size)
|
| 25 |
|
| 26 |
+
# Upsampling blocks
|
| 27 |
+
self.upsample_layers, self.conv_layers, self.bn_layers = nn.ModuleList(), nn.ModuleList(), nn.ModuleList()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
in_channels = 256
|
| 29 |
for i in range(self.num_upsamples):
|
| 30 |
out_channels = in_channels // 2 if i < self.num_upsamples - 1 else 64
|
| 31 |
+
self.upsample_layers.append(nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1))
|
| 32 |
+
self.conv_layers.append(nn.Conv2d(out_channels, out_channels, 3, padding=1))
|
|
|
|
|
|
|
|
|
|
| 33 |
self.bn_layers.append(nn.BatchNorm2d(out_channels))
|
|
|
|
| 34 |
in_channels = out_channels
|
| 35 |
|
| 36 |
+
# Final output
|
| 37 |
+
self.final_conv = nn.Conv2d(64, output_channels, 3, padding=1)
|
| 38 |
+
|
| 39 |
def forward(self, noise, features=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
batch_size = noise.size(0)
|
|
|
|
|
|
|
| 41 |
if features is not None:
|
| 42 |
x = torch.cat([noise, features], dim=1)
|
| 43 |
else:
|
|
|
|
| 44 |
zero_features = torch.zeros(batch_size, self.feature_dim, device=noise.device)
|
| 45 |
x = torch.cat([noise, zero_features], dim=1)
|
| 46 |
|
|
|
|
| 47 |
x = self.input_projection(x)
|
| 48 |
x = x.view(batch_size, 256, self.start_size, self.start_size)
|
| 49 |
|
|
|
|
| 50 |
for i in range(self.num_upsamples):
|
| 51 |
x = self.upsample_layers[i](x)
|
| 52 |
x = self.bn_layers[i](x)
|
| 53 |
x = F.relu(x)
|
|
|
|
| 54 |
x = self.conv_layers[i](x)
|
| 55 |
x = self.bn_layers[i](x)
|
| 56 |
x = F.relu(x)
|
| 57 |
|
| 58 |
+
return torch.tanh(self.final_conv(x)) # [-1, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
class StyleConditionedGenerator(KolamGenerator):
|
| 62 |
+
"""Generator with style-conditioning for more variety."""
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def __init__(self, noise_dim=100, feature_dim=128, style_dim=32, output_channels=1, image_size=64):
|
|
|
|
| 65 |
super().__init__(noise_dim, feature_dim, output_channels, image_size)
|
|
|
|
|
|
|
| 66 |
self.style_embedding = nn.Sequential(
|
| 67 |
nn.Linear(style_dim, 64),
|
| 68 |
nn.ReLU(),
|
| 69 |
nn.Linear(64, 128)
|
| 70 |
)
|
| 71 |
+
self.input_projection = nn.Linear(noise_dim + feature_dim + 128, 256 * self.start_size * self.start_size)
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def forward(self, noise, features=None, style=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
batch_size = noise.size(0)
|
|
|
|
|
|
|
| 75 |
if style is not None:
|
| 76 |
style_embed = self.style_embedding(style)
|
| 77 |
else:
|
| 78 |
style_embed = torch.zeros(batch_size, 128, device=noise.device)
|
| 79 |
|
|
|
|
| 80 |
if features is not None:
|
| 81 |
x = torch.cat([noise, features, style_embed], dim=1)
|
| 82 |
else:
|
| 83 |
zero_features = torch.zeros(batch_size, self.feature_dim, device=noise.device)
|
| 84 |
x = torch.cat([noise, zero_features, style_embed], dim=1)
|
| 85 |
|
|
|
|
| 86 |
x = self.input_projection(x)
|
| 87 |
x = x.view(batch_size, 256, self.start_size, self.start_size)
|
| 88 |
|
|
|
|
| 89 |
for i in range(self.num_upsamples):
|
| 90 |
x = self.upsample_layers[i](x)
|
| 91 |
x = self.bn_layers[i](x)
|
| 92 |
x = F.relu(x)
|
|
|
|
| 93 |
x = self.conv_layers[i](x)
|
| 94 |
x = self.bn_layers[i](x)
|
| 95 |
x = F.relu(x)
|
| 96 |
|
| 97 |
+
return torch.tanh(self.final_conv(x))
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# -------------------------------
|
| 101 |
+
# Utility: easy generation method
|
| 102 |
+
# -------------------------------
|
| 103 |
+
def generate_kolam_samples(generator, num_samples=4, device="cpu"):
|
| 104 |
+
"""Generate sample Kolams with random noise + styles."""
|
| 105 |
+
generator.eval()
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
noise = torch.randn(num_samples, generator.noise_dim, device=device)
|
| 108 |
+
features = torch.randn(num_samples, generator.feature_dim, device=device)
|
| 109 |
+
|
| 110 |
+
if isinstance(generator, StyleConditionedGenerator):
|
| 111 |
+
style = torch.randn(num_samples, 32, device=device)
|
| 112 |
+
return generator(noise, features, style)
|
| 113 |
+
else:
|
| 114 |
+
return generator(noise, features)
|
| 115 |
|
| 116 |
|
| 117 |
if __name__ == "__main__":
|
| 118 |
+
gen = StyleConditionedGenerator()
|
| 119 |
+
samples = generate_kolam_samples(gen, num_samples=2)
|
| 120 |
+
print("Generated:", samples.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|