Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| import gradio as gr | |
| from PIL import Image | |
| # Load dog breed classification model | |
| pipe = pipeline("image-classification", model="jhoppanne/Dogs-Breed-Image-Classification-V1") | |
| # Function to be used in Gradio | |
| def dog_breed_classifier(image): | |
| results = pipe(image) | |
| return {res["label"]: res["score"] for res in results} | |
| # Gradio Interface | |
| iface = gr.Interface( | |
| fn=dog_breed_classifier, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Label(num_top_classes=3), | |
| title="Dog Breed Classifier", | |
| description="Upload a dog image to identify its breed." | |
| ) | |
| # Run the app | |
| iface.launch() | |