Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from torchvision import models | |
| import torch.nn as nn | |
| import torch | |
| import os | |
| from PIL import Image | |
| from torchvision.transforms import transforms | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| share = os.getenv("SHARE", False) | |
| pretrained_model = models.vgg19(pretrained=True) | |
| class NeuralNet(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.model = nn.Sequential( | |
| pretrained_model, | |
| nn.Flatten(), | |
| nn.Linear(1000, 1), | |
| nn.Sigmoid() | |
| ) | |
| def forward(self, x): | |
| return self.model(x) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = NeuralNet() | |
| model.load_state_dict(torch.load("mask_detection.pth", map_location=device)) | |
| model = model.to(device) | |
| transform=transforms.Compose([ | |
| transforms.Resize((150,150)), | |
| transforms.RandomHorizontalFlip(), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5]) | |
| ]) | |
| def maskDetection(image): | |
| image = Image.fromarray(image.astype('uint8'), 'RGB') | |
| image.save("input.png") | |
| image = Image.open("input.png") | |
| input = transform(image).unsqueeze(0) | |
| output = model(input.to(device)) | |
| probability = output.item() | |
| if probability < 0.5: | |
| return "Person in the pic has mask" | |
| else: | |
| return "Person in the pic does not have mask" | |
| iface = gr.Interface(fn=maskDetection, inputs="image", outputs="text", title="Mask Detection") | |
| if __name__ == "__main__": | |
| if share: | |
| server = "0.0.0.0" | |
| else: | |
| server = "127.0.0.1" | |
| iface.launch(server_name = server) |