File size: 10,801 Bytes
ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a 3e6331d ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a c14c75e ad64b5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# stock.py — compact, merged, single-file
import yfinance as yf
import pandas as pd
import traceback
# ================================================================
# BASIC YFINANCE FETCHERS
# ================================================================
def yfinfo(symbol):
return yf.Ticker(symbol + ".NS").info
def qresult(symbol):
return yf.Ticker(symbol + ".NS").quarterly_financials
def result(symbol):
return yf.Ticker(symbol + ".NS").financials
def balance(symbol):
return yf.Ticker(symbol + ".NS").balance_sheet
def cashflow(symbol):
return yf.Ticker(symbol + ".NS").cashflow
def dividend(symbol):
return yf.Ticker(symbol + ".NS").dividends.to_frame("Dividend")
def split(symbol):
return yf.Ticker(symbol + ".NS").splits.to_frame("Split")
def intraday(symbol):
return yf.download(symbol + ".NS", period="1d", interval="5m").round(2)
def daily(symbol):
return yf.download(symbol + ".NS", period="1y", interval="1d").round(2)
# ================================================================
# FETCH INFO (USES COMMON.PY HELPERS)
# ================================================================
from common import (
format_number,
format_large_number,
make_table,
html_card,
html_section,
html_error,
clean_df,
safe_get,
wrap_html
)
from chart_builder import build_chart
from ta_indi_pat import talib_df
# -------------------------- INFO ------------------------------
def fetch_info(symbol):
try:
info = yfinfo(symbol)
if not info:
return html_error(f"No information found for {symbol}")
basic = {
"Symbol": symbol,
"Name": safe_get(info, "longName"),
"Sector": safe_get(info, "sector"),
"Industry": safe_get(info, "industry"),
"Website": safe_get(info, "website"),
"Employee Count": format_large_number(safe_get(info, "fullTimeEmployees")),
}
df_basic = pd.DataFrame(basic.items(), columns=["Field", "Value"])
price_info = {
"Current Price": format_number(safe_get(info, "currentPrice")),
"Previous Close": format_number(safe_get(info, "previousClose")),
"Open": format_number(safe_get(info, "open")),
"Day High": format_number(safe_get(info, "dayHigh")),
"Day Low": format_number(safe_get(info, "dayLow")),
"52W High": format_number(safe_get(info, "fiftyTwoWeekHigh")),
"52W Low": format_number(safe_get(info, "fiftyTwoWeekLow")),
"Volume": format_large_number(safe_get(info, "volume")),
"Avg Volume": format_large_number(safe_get(info, "averageVolume")),
}
df_price = pd.DataFrame(price_info.items(), columns=["Field", "Value"])
valuation = {
"Market Cap": format_large_number(safe_get(info, "marketCap")),
"PE Ratio": format_number(safe_get(info, "trailingPE")),
"EPS": format_number(safe_get(info, "trailingEps")),
"PB Ratio": format_number(safe_get(info, "priceToBook")),
"Dividend Yield": format_number(safe_get(info, "dividendYield")),
"ROE": format_number(safe_get(info, "returnOnEquity")),
"ROA": format_number(safe_get(info, "returnOnAssets")),
}
df_val = pd.DataFrame(valuation.items(), columns=["Field", "Value"])
extra = {
"Beta": format_number(safe_get(info, "beta")),
"Revenue": format_large_number(safe_get(info, "totalRevenue")),
"Gross Margins": format_number(safe_get(info, "grossMargins")),
"Operating Margins": format_number(safe_get(info, "operatingMargins")),
"Profit Margins": format_number(safe_get(info, "profitMargins")),
"Book Value": format_number(safe_get(info, "bookValue")),
}
df_extra = pd.DataFrame(extra.items(), columns=["Field", "Value"])
final_html = (
html_card("Basic Information", make_table(df_basic))
+ html_card("Price Details", make_table(df_price))
+ html_card("Valuation Metrics", make_table(df_val))
+ html_card("Additional Company Data", make_table(df_extra))
)
return final_html
except Exception as e:
return html_error(f"INFO ERROR: {e}<br><pre>{traceback.format_exc()}</pre>")
# -------------------------- INTRADAY ------------------------------
def fetch_intraday(symbol, indicators=None):
try:
df = intraday(symbol)
if df.empty:
return wrap_html(f"<h1>No intraday data for {symbol}</h1>")
if isinstance(df.columns, pd.MultiIndex):
df.columns = df.columns.get_level_values(0)
chart_html = build_chart(df, indicators=indicators, volume=True)
table_html = make_table(df.tail(50))
return wrap_html(f"{chart_html}<h2>Last 50 Rows</h2>{table_html}",
title=f"{symbol} Intraday")
except Exception as e:
return wrap_html(f"<h1>Error:{e}</h1>")
# -------------------------- DAILY ------------------------------
def fetch_daily(symbol, source="yfinance", max_rows=200):
try:
df = daily(symbol)
df_disp = df.head(max_rows)
combined_df = talib_df(df_disp)
table_html = combined_df.to_html(
classes="table table-striped table-bordered",
index=False
)
scroll = f"""
<div style="overflow:auto; max-height:600px; border:1px solid #ccc;">
{table_html}
</div>
"""
return wrap_html(f"<h2>{symbol} Daily</h2>" + html_card("TA-Lib", scroll))
except Exception as e:
return html_card("Error", str(e))
# -------------------------- QUARTERLY ------------------------------
def fetch_qresult(symbol):
try:
df = qresult(symbol)
if df.empty:
return wrap_html(f"<h1>No quarterly results for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
df_fmt.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_fmt.index]
return wrap_html(make_table(df_fmt),
title=f"{symbol} Quarterly Results")
except Exception as e:
return wrap_html(html_error(f"Quarterly Error: {e}"))
# -------------------------- ANNUAL ------------------------------
def fetch_result(symbol):
try:
df = result(symbol)
if df.empty:
return wrap_html(f"<h1>No annual results for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
df_fmt.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_fmt.index]
return wrap_html(make_table(df_fmt),
title=f"{symbol} Annual Results")
except Exception as e:
return wrap_html(html_error(f"Annual Error: {e}"))
# -------------------------- BALANCE ------------------------------
def fetch_balance(symbol):
try:
df = balance(symbol)
if df.empty:
return wrap_html(f"<h1>No balance sheet for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
df_fmt.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_fmt.index]
return wrap_html(make_table(df_fmt),
title=f"{symbol} Balance Sheet")
except Exception as e:
return wrap_html(html_error(f"Balance Error: {e}"))
# -------------------------- CASHFLOW ------------------------------
def fetch_cashflow(symbol):
try:
df = cashflow(symbol)
if df.empty:
return wrap_html(f"<h1>No cashflow for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
df_fmt.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_fmt.index]
return wrap_html(make_table(df_fmt),
title=f"{symbol} Cash Flow")
except Exception as e:
return wrap_html(html_error(f"Cash Flow Error: {e}"))
# -------------------------- DIVIDEND ------------------------------
def fetch_dividend(symbol):
try:
df = dividend(symbol)
if df.empty:
return wrap_html(f"<h1>No dividend history for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
df_fmt.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_fmt.index]
return wrap_html(make_table(df_fmt),
title=f"{symbol} Dividends")
except Exception as e:
return wrap_html(html_error(f"Dividend Error: {e}"))
# -------------------------- SPLIT ------------------------------
def fetch_split(symbol):
try:
df = split(symbol)
if df.empty:
return wrap_html(f"<h1>No splits for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
df_fmt.index = [str(i.date()) if hasattr(i, "date") else str(i) for i in df_fmt.index]
return wrap_html(make_table(df_fmt),
title=f"{symbol} Splits")
except Exception as e:
return wrap_html(html_error(f"Split Error: {e}"))
# -------------------------- OTHER (EARNINGS) ------------------------------
def fetch_other(symbol):
try:
ticker = yf.Ticker(symbol + ".NS")
df = ticker.earnings
if df.empty:
return wrap_html(f"<h1>No earnings data for {symbol}</h1>")
df_fmt = df.copy()
for col in df_fmt.columns:
df_fmt[col] = df_fmt[col].apply(
lambda x: format_large_number(x) if isinstance(x, (int, float)) else x
)
return wrap_html(make_table(df_fmt),
title=f"{symbol} Earnings")
except Exception as e:
return wrap_html(html_error(f"Earnings Error: {e}"))
|