backend / nse.py
eshan6704's picture
Update nse.py
ebbd015 verified
raw
history blame
12.1 kB
# ================================
# NSE Fetch Module (DF Only)
# ================================
import datetime
import pandas as pd
import time
import requests
import nsepython # Moved import here
#import nse
HEADERS = {
"User-Agent": "Mozilla/5.0",
"Accept-Language": "en-US,en;q=0.9",
}
session = requests.Session()
session.get("https://www.nseindia.com", headers=HEADERS, timeout=5)
# ---------------------------------------------------
# Helper: JSON Fetch
# ---------------------------------------------------
def fetch_data(url):
try:
response = session.get(url, headers=HEADERS, timeout=5)
response.raise_for_status()
return response.json()
except:
return None
# ---------------------------------------------------
# Clean DF
# ---------------------------------------------------
def clean_dataframe(df):
df.columns = df.columns.str.strip()
str_cols = df.select_dtypes(include=["object"]).columns
df[str_cols] = df[str_cols].apply(lambda x: x.str.strip())
df.fillna(0.01, inplace=True)
return df
# ---------------------------------------------------
# Bhavcopy Fetch β†’ DataFrame
# ---------------------------------------------------
def fetch_bhavcopy_df(date):
"""Returns Cleaned Bhavcopy DF for EQ / BE / SM"""
date_str = date.strftime("%d-%m-%Y")
print(f"Attempting to fetch bhavcopy for date: {date_str}")
try:
df = nsepython.get_bhavcopy(date_str) # Direct call
if df is None or df.empty:
print(f"No bhavcopy data or empty DataFrame returned for {date_str}")
return None, None
actual_bhavcopy_date = datetime.datetime.strptime(
df.iloc[2, 2].strip(), "%d-%b-%Y"
).date()
df = clean_dataframe(df)
df_filtered = df[df.iloc[:, 1].isin(["EQ", "BE", "SM"])]
return df_filtered, actual_bhavcopy_date
except Exception as e:
print(f"An error occurred while fetching bhavcopy for {date_str}: {e}")
return None, None
# ---------------------------------------------------
# Stock Deliverable DF (security-wise archive)
# ---------------------------------------------------
def fetch_stock_df(nse_module, stock, start, end, series="ALL"):
"""Return DF for security-wise archive (deliverable + all columns)"""
df = nse_module.security_wise_archive(start, end, stock, series)
if df is not None and not df.empty:
return df
return None
# ---------------------------------------------------
# All NSE Indices β†’ DataFrames
# ---------------------------------------------------
def nse_indices_df():
url = "https://www.nseindia.com/api/allIndices"
data = fetch_data(url)
if data is None:
return None, None, None
df_dates = pd.DataFrame([data["dates"]])
df_meta = pd.DataFrame([{k: v for k, v in data.items() if k not in ["data", "dates"]}])
df_data = pd.DataFrame(data["data"])
return df_dates, df_meta, df_data
# ---------------------------------------------------
# Specific Index β†’ DataFrames
# ---------------------------------------------------
def nse_index_df(index_name="NIFTY 50"):
url = f"https://www.nseindia.com/api/equity-stockIndices?index={index_name.replace(' ', '%20')}"
data = fetch_data(url)
if data is None:
return None, None, None, None
df_market = pd.DataFrame([data["marketStatus"]])
df_adv = pd.DataFrame([data["advance"]])
df_meta = pd.DataFrame([data["metadata"]])
df_data = pd.DataFrame(data["data"])
return df_market, df_adv, df_meta, df_data
# ---------------------------------------------------
# Option Chain DF (Raw CE/PE)
# ---------------------------------------------------
def fetch_option_chain_df(symbol="NIFTY"):
url = f"https://www.nseindia.com/api/option-chain-indices?symbol={symbol}"
data = fetch_data(url)
if data and "filtered" in data:
ce_df = pd.DataFrame([r["CE"] for r in data["filtered"]["data"] if "CE" in r])
pe_df = pd.DataFrame([r["PE"] for r in data["filtered"]["data"] if "PE" in r])
return ce_df, pe_df
return None, None
# ---------------------------------------------------
# Pre-open market β†’ DataFrame
# ---------------------------------------------------
def nse_preopen_df(key="NIFTY"):
url = f"https://www.nseindia.com/api/market-data-pre-open?key={key}"
data = fetch_data(url)
if data:
return pd.DataFrame(data.get("data", []))
return None
# ---------------------------------------------------
# FNO Quote β†’ DataFrames
# ---------------------------------------------------
def nse_fno_df(symbol):
payload = nsepython.nse_quote(symbol) # Direct call
if not payload:
return None
# info + timestamps + volatility info
info_keys = list(payload["info"].keys()) + [
"fut_timestamp",
"opt_timestamp",
"maxVolatility",
"minVolatility",
"avgVolatility",
]
info_values = list(payload["info"].values()) + [
payload["fut_timestamp"],
payload["opt_timestamp"],
payload["underlyingInfo"]["volatility"][0]['maxVolatility'],
payload["underlyingInfo"]["volatility"][0]['minVolatility'],
payload["underlyingInfo"]["volatility"][0]['avgVolatility'],
]
df_info = pd.DataFrame([info_values], columns=info_keys)
df_mcap = pd.DataFrame(payload["underlyingInfo"].get("marketCap", {}))
df_fno_list = pd.DataFrame(payload.get("allSymbol", []), columns=["FNO_Symbol"])
# Core stock depth
df_stock = process_stocks_df(payload["stocks"])
return {
"info": df_info,
"mcap": df_mcap,
"fno": df_fno_list,
"stock": df_stock
}
# ---------------------------------------------------
# Handle nested stock β†’ DF
# ---------------------------------------------------
def process_stocks_df(data):
"""Return final merged stock DF only"""
trade_info_list, other_info_list = [], []
bid_ask_list = []
stock_values = []
trade_keys = other_keys = bidask_keys = stock_keys = None
for i, stock in enumerate(data):
meta = stock.pop("metadata")
depth = stock.pop("marketDeptOrderBook")
parent = stock
trade_info = depth.pop("tradeInfo", {})
other_info = depth.pop("otherInfo", {})
trade_info_list.append(trade_info)
other_info_list.append(other_info)
# bid / ask
bid_ask_row = {}
for side in ["bid", "ask"]:
for j, entry in enumerate(depth.get(side, []), start=1):
bid_ask_row[f"{side}_price_{j}"] = entry.get("price")
bid_ask_row[f"{side}_qty_{j}"] = entry.get("quantity")
bid_ask_list.append(bid_ask_row)
if i == 0:
trade_keys = list(trade_info.keys())
other_keys = list(other_info.keys())
bidask_keys = list(bid_ask_row.keys())
stock_keys = list(meta.keys()) + list(depth.keys()) + list(parent.keys())
stock_values.append(
list(meta.values()) + list(depth.values()) + list(parent.values())
)
df_trade = pd.DataFrame(trade_info_list, columns=trade_keys)
df_other = pd.DataFrame(other_info_list, columns=other_keys)
df_bidask = pd.DataFrame(bid_ask_list, columns=bidask_keys)
df_stock = pd.DataFrame(stock_values, columns=stock_keys)
df_stock = df_stock.drop(columns=['bid', 'ask', 'carryOfCost'], errors="ignore")
return pd.concat([df_stock, df_trade, df_other, df_bidask], axis=1)
#date = datetime.date(2025, 11, 27) # Trying a past date where data is likely available
#df = nse_preopen_df("NIFTY")
#df_bhav, act_date = fetch_bhavcopy_df(date)
#df_ce, df_pe = fetch_option_chain_df("NIFTY")
#df_m, df_a, df_meta, df_data = nse_index_df("NIFTY 50")
#fno = nse_fno_df("RELIANCE")
# -----------------------------
# Global Variables
# -----------------------------
nse_del_key_map = {
'Symbol': "Symbol", 'Series': "Series",
'Date': 'Date', 'Prev Close': 'Preclose',
'Open Price': 'Open', 'High Price': 'High',
'Low Price': 'Low', 'Last Price': 'Last',
'Close Price': 'Close', 'Average Price': 'AvgPrice',
'Total Traded Quantity': 'Volume',
'Turnover β‚Ή': 'Turnover', 'No. of Trades': "Trades",
'Deliverable Qty': "Delivery", '% Dly Qt to Traded Qty': "Del%"
}
# -----------------------------
# Data Fetching Functions (NSE)
# -----------------------------
def url_nse_del(symbol, start_date, end_date):
base_url = "https://www.nseindia.com/api/historicalOR/generateSecurityWiseHistoricalData"
start_date_str = start_date.strftime("%d-%m-%Y")
end_date_str = end_date.strftime("%d-%m-%Y")
url = f"{base_url}?from={start_date_str}&to={end_date_str}&symbol={symbol.split('.')[0]}&type=priceVolumeDeliverable&series=ALL&csv=true"
return url
def to_numeric_safe(series):
series = series.replace('-', 0)
series = series.fillna(0)
series = series.astype(str).str.replace(',', '')
return pd.to_numeric(series, errors='coerce').fillna(0)
def nse_del(symbol, start_date_str=None, end_date_str=None):
# Default end date is today
end_date = datetime.now()
if end_date_str:
try:
end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
except ValueError:
print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.")
end_date = datetime.now()
# Default start date is one year prior to end_date
start_date = end_date - timedelta(days=365)
if start_date_str:
try:
start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
except ValueError:
print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.")
start_date = end_date - timedelta(days=365)
# Ensure start_date is not after end_date
if start_date > end_date:
print("Warning: Start date is after end date. Swapping dates.")
start_date, end_date = end_date, start_date
url = url_nse_del(symbol, start_date, end_date)
headers = {
'User-Agent': 'Mozilla/5.0'
}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
if response.content:
df = pd.read_csv(io.StringIO(response.content.decode('utf-8'))).round(2)
df.columns = df.columns.str.strip()
df.rename(columns=nse_del_key_map, inplace=True)
# Capitalize the first letter of ALL column names after renaming
df.columns = [col.capitalize() for col in df.columns]
# Remove 'Symbol', 'Series', 'Avgprice', and 'Last' columns (now capitalized)
df.drop(columns=['Symbol','Series','Avgprice','Last'], errors='ignore', inplace=True)
# Convert 'Date' column to datetime objects
df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%Y').dt.strftime('%Y-%m-%d')
numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades']
# Ensure numeric_cols are capitalized before checking and conversion
numeric_cols_capitalized = [col.capitalize() for col in numeric_cols]
for col in numeric_cols_capitalized:
if col in df.columns:
df[col] = to_numeric_safe(df[col])
else:
df[col] = 0
return df
except Exception as e:
print(f"Error fetching data from NSE for {symbol}: {e}")
return None
def daily(symbol,source="yfinace"):
if source=="yfinance":
df = yf.download(symbol + ".NS", period="1y", interval="1d").round(2)
if df.empty:
return html_card("Error", f"No daily data found for {symbol}")
# --- Standardize columns ---
df.columns = ["Close", "High", "Low", "Open", "Volume"]
df.reset_index(inplace=True) # make Date a column
if source=="NSE":
df=nse_del(symbol)
print("df from nse data")
return df