Update nse.py
Browse files
nse.py
CHANGED
|
@@ -222,11 +222,116 @@ def process_stocks_df(data):
|
|
| 222 |
|
| 223 |
|
| 224 |
|
| 225 |
-
date = datetime.date(2025, 11, 27) # Trying a past date where data is likely available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
|
| 225 |
+
#date = datetime.date(2025, 11, 27) # Trying a past date where data is likely available
|
| 226 |
+
|
| 227 |
+
#df = nse_preopen_df("NIFTY")
|
| 228 |
+
#df_bhav, act_date = fetch_bhavcopy_df(date)
|
| 229 |
+
#df_ce, df_pe = fetch_option_chain_df("NIFTY")
|
| 230 |
+
#df_m, df_a, df_meta, df_data = nse_index_df("NIFTY 50")
|
| 231 |
+
|
| 232 |
+
#fno = nse_fno_df("RELIANCE")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# -----------------------------
|
| 236 |
+
# Global Variables
|
| 237 |
+
# -----------------------------
|
| 238 |
+
nse_del_key_map = {
|
| 239 |
+
'Symbol': "Symbol", 'Series': "Series",
|
| 240 |
+
'Date': 'Date', 'Prev Close': 'Preclose',
|
| 241 |
+
'Open Price': 'Open', 'High Price': 'High',
|
| 242 |
+
'Low Price': 'Low', 'Last Price': 'Last',
|
| 243 |
+
'Close Price': 'Close', 'Average Price': 'AvgPrice',
|
| 244 |
+
'Total Traded Quantity': 'Volume',
|
| 245 |
+
'Turnover ₹': 'Turnover', 'No. of Trades': "Trades",
|
| 246 |
+
'Deliverable Qty': "Delivery", '% Dly Qt to Traded Qty': "Del%"
|
| 247 |
+
}
|
| 248 |
|
| 249 |
+
# -----------------------------
|
| 250 |
+
# Data Fetching Functions (NSE)
|
| 251 |
+
# -----------------------------
|
| 252 |
+
def url_nse_del(symbol, start_date, end_date):
|
| 253 |
+
base_url = "https://www.nseindia.com/api/historicalOR/generateSecurityWiseHistoricalData"
|
| 254 |
+
start_date_str = start_date.strftime("%d-%m-%Y")
|
| 255 |
+
end_date_str = end_date.strftime("%d-%m-%Y")
|
| 256 |
+
url = f"{base_url}?from={start_date_str}&to={end_date_str}&symbol={symbol.split('.')[0]}&type=priceVolumeDeliverable&series=ALL&csv=true"
|
| 257 |
+
return url
|
| 258 |
+
|
| 259 |
+
def to_numeric_safe(series):
|
| 260 |
+
series = series.replace('-', 0)
|
| 261 |
+
series = series.fillna(0)
|
| 262 |
+
series = series.astype(str).str.replace(',', '')
|
| 263 |
+
return pd.to_numeric(series, errors='coerce').fillna(0)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def nse_del(symbol, start_date_str=None, end_date_str=None):
|
| 267 |
+
# Default end date is today
|
| 268 |
+
end_date = datetime.now()
|
| 269 |
+
if end_date_str:
|
| 270 |
+
try:
|
| 271 |
+
end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
|
| 272 |
+
except ValueError:
|
| 273 |
+
print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.")
|
| 274 |
+
end_date = datetime.now()
|
| 275 |
+
|
| 276 |
+
# Default start date is one year prior to end_date
|
| 277 |
+
start_date = end_date - timedelta(days=365)
|
| 278 |
+
if start_date_str:
|
| 279 |
+
try:
|
| 280 |
+
start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
|
| 281 |
+
except ValueError:
|
| 282 |
+
print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.")
|
| 283 |
+
start_date = end_date - timedelta(days=365)
|
| 284 |
+
|
| 285 |
+
# Ensure start_date is not after end_date
|
| 286 |
+
if start_date > end_date:
|
| 287 |
+
print("Warning: Start date is after end date. Swapping dates.")
|
| 288 |
+
start_date, end_date = end_date, start_date
|
| 289 |
+
|
| 290 |
+
url = url_nse_del(symbol, start_date, end_date)
|
| 291 |
+
headers = {
|
| 292 |
+
'User-Agent': 'Mozilla/5.0'
|
| 293 |
+
}
|
| 294 |
+
try:
|
| 295 |
+
response = requests.get(url, headers=headers)
|
| 296 |
+
response.raise_for_status()
|
| 297 |
+
if response.content:
|
| 298 |
+
df = pd.read_csv(io.StringIO(response.content.decode('utf-8'))).round(2)
|
| 299 |
+
df.columns = df.columns.str.strip()
|
| 300 |
+
df.rename(columns=nse_del_key_map, inplace=True)
|
| 301 |
+
|
| 302 |
+
# Capitalize the first letter of ALL column names after renaming
|
| 303 |
+
df.columns = [col.capitalize() for col in df.columns]
|
| 304 |
+
|
| 305 |
+
# Remove 'Symbol', 'Series', 'Avgprice', and 'Last' columns (now capitalized)
|
| 306 |
+
df.drop(columns=['Symbol','Series','Avgprice','Last'], errors='ignore', inplace=True)
|
| 307 |
+
|
| 308 |
+
# Convert 'Date' column to datetime objects
|
| 309 |
+
df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%Y').dt.strftime('%Y-%m-%d')
|
| 310 |
+
|
| 311 |
+
numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades']
|
| 312 |
+
# Ensure numeric_cols are capitalized before checking and conversion
|
| 313 |
+
numeric_cols_capitalized = [col.capitalize() for col in numeric_cols]
|
| 314 |
+
for col in numeric_cols_capitalized:
|
| 315 |
+
if col in df.columns:
|
| 316 |
+
df[col] = to_numeric_safe(df[col])
|
| 317 |
+
else:
|
| 318 |
+
df[col] = 0
|
| 319 |
+
return df
|
| 320 |
+
except Exception as e:
|
| 321 |
+
print(f"Error fetching data from NSE for {symbol}: {e}")
|
| 322 |
+
return None
|
| 323 |
|
| 324 |
+
def daily(symbol,source="yfinace"):
|
| 325 |
+
if source=="yfinance":
|
| 326 |
+
df = yf.download(symbol + ".NS", period="1y", interval="1d").round(2)
|
| 327 |
+
if df.empty:
|
| 328 |
+
return html_card("Error", f"No daily data found for {symbol}")
|
| 329 |
+
|
| 330 |
+
# --- Standardize columns ---
|
| 331 |
+
df.columns = ["Close", "High", "Low", "Open", "Volume"]
|
| 332 |
+
df.reset_index(inplace=True) # make Date a column
|
| 333 |
+
|
| 334 |
+
if source=="NSE":
|
| 335 |
+
df=nse_del(symbol)
|
| 336 |
+
print("df from nse data")
|
| 337 |
+
return df
|