eshan6704 commited on
Commit
ebbd015
·
verified ·
1 Parent(s): 858b3fa

Update nse.py

Browse files
Files changed (1) hide show
  1. nse.py +111 -6
nse.py CHANGED
@@ -222,11 +222,116 @@ def process_stocks_df(data):
222
 
223
 
224
 
225
- date = datetime.date(2025, 11, 27) # Trying a past date where data is likely available
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
 
227
- df = nse_preopen_df("NIFTY")
228
- df_bhav, act_date = fetch_bhavcopy_df(date)
229
- df_ce, df_pe = fetch_option_chain_df("NIFTY")
230
- df_m, df_a, df_meta, df_data = nse_index_df("NIFTY 50")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
- fno = nse_fno_df("RELIANCE")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
 
223
 
224
 
225
+ #date = datetime.date(2025, 11, 27) # Trying a past date where data is likely available
226
+
227
+ #df = nse_preopen_df("NIFTY")
228
+ #df_bhav, act_date = fetch_bhavcopy_df(date)
229
+ #df_ce, df_pe = fetch_option_chain_df("NIFTY")
230
+ #df_m, df_a, df_meta, df_data = nse_index_df("NIFTY 50")
231
+
232
+ #fno = nse_fno_df("RELIANCE")
233
+
234
+
235
+ # -----------------------------
236
+ # Global Variables
237
+ # -----------------------------
238
+ nse_del_key_map = {
239
+ 'Symbol': "Symbol", 'Series': "Series",
240
+ 'Date': 'Date', 'Prev Close': 'Preclose',
241
+ 'Open Price': 'Open', 'High Price': 'High',
242
+ 'Low Price': 'Low', 'Last Price': 'Last',
243
+ 'Close Price': 'Close', 'Average Price': 'AvgPrice',
244
+ 'Total Traded Quantity': 'Volume',
245
+ 'Turnover ₹': 'Turnover', 'No. of Trades': "Trades",
246
+ 'Deliverable Qty': "Delivery", '% Dly Qt to Traded Qty': "Del%"
247
+ }
248
 
249
+ # -----------------------------
250
+ # Data Fetching Functions (NSE)
251
+ # -----------------------------
252
+ def url_nse_del(symbol, start_date, end_date):
253
+ base_url = "https://www.nseindia.com/api/historicalOR/generateSecurityWiseHistoricalData"
254
+ start_date_str = start_date.strftime("%d-%m-%Y")
255
+ end_date_str = end_date.strftime("%d-%m-%Y")
256
+ url = f"{base_url}?from={start_date_str}&to={end_date_str}&symbol={symbol.split('.')[0]}&type=priceVolumeDeliverable&series=ALL&csv=true"
257
+ return url
258
+
259
+ def to_numeric_safe(series):
260
+ series = series.replace('-', 0)
261
+ series = series.fillna(0)
262
+ series = series.astype(str).str.replace(',', '')
263
+ return pd.to_numeric(series, errors='coerce').fillna(0)
264
+
265
+
266
+ def nse_del(symbol, start_date_str=None, end_date_str=None):
267
+ # Default end date is today
268
+ end_date = datetime.now()
269
+ if end_date_str:
270
+ try:
271
+ end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
272
+ except ValueError:
273
+ print(f"Warning: Invalid end date format '{end_date_str}'. Using today's date.")
274
+ end_date = datetime.now()
275
+
276
+ # Default start date is one year prior to end_date
277
+ start_date = end_date - timedelta(days=365)
278
+ if start_date_str:
279
+ try:
280
+ start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
281
+ except ValueError:
282
+ print(f"Warning: Invalid start date format '{start_date_str}'. Using default start date.")
283
+ start_date = end_date - timedelta(days=365)
284
+
285
+ # Ensure start_date is not after end_date
286
+ if start_date > end_date:
287
+ print("Warning: Start date is after end date. Swapping dates.")
288
+ start_date, end_date = end_date, start_date
289
+
290
+ url = url_nse_del(symbol, start_date, end_date)
291
+ headers = {
292
+ 'User-Agent': 'Mozilla/5.0'
293
+ }
294
+ try:
295
+ response = requests.get(url, headers=headers)
296
+ response.raise_for_status()
297
+ if response.content:
298
+ df = pd.read_csv(io.StringIO(response.content.decode('utf-8'))).round(2)
299
+ df.columns = df.columns.str.strip()
300
+ df.rename(columns=nse_del_key_map, inplace=True)
301
+
302
+ # Capitalize the first letter of ALL column names after renaming
303
+ df.columns = [col.capitalize() for col in df.columns]
304
+
305
+ # Remove 'Symbol', 'Series', 'Avgprice', and 'Last' columns (now capitalized)
306
+ df.drop(columns=['Symbol','Series','Avgprice','Last'], errors='ignore', inplace=True)
307
+
308
+ # Convert 'Date' column to datetime objects
309
+ df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%Y').dt.strftime('%Y-%m-%d')
310
+
311
+ numeric_cols = ['Close', 'Preclose', 'Open', 'High', 'Low', 'Volume', 'Delivery', 'Turnover', 'Trades']
312
+ # Ensure numeric_cols are capitalized before checking and conversion
313
+ numeric_cols_capitalized = [col.capitalize() for col in numeric_cols]
314
+ for col in numeric_cols_capitalized:
315
+ if col in df.columns:
316
+ df[col] = to_numeric_safe(df[col])
317
+ else:
318
+ df[col] = 0
319
+ return df
320
+ except Exception as e:
321
+ print(f"Error fetching data from NSE for {symbol}: {e}")
322
+ return None
323
 
324
+ def daily(symbol,source="yfinace"):
325
+ if source=="yfinance":
326
+ df = yf.download(symbol + ".NS", period="1y", interval="1d").round(2)
327
+ if df.empty:
328
+ return html_card("Error", f"No daily data found for {symbol}")
329
+
330
+ # --- Standardize columns ---
331
+ df.columns = ["Close", "High", "Low", "Open", "Volume"]
332
+ df.reset_index(inplace=True) # make Date a column
333
+
334
+ if source=="NSE":
335
+ df=nse_del(symbol)
336
+ print("df from nse data")
337
+ return df