backend / nse.py
eshan6704's picture
Create nse.py
3a83327 verified
raw
history blame
7.53 kB
# ================================
# NSE Fetch Module (DF Only)
# ================================
import datetime
import pandas as pd
import time
import requests
import nsepython # Moved import here
HEADERS = {
"User-Agent": "Mozilla/5.0",
"Accept-Language": "en-US,en;q=0.9",
}
session = requests.Session()
session.get("https://www.nseindia.com", headers=HEADERS, timeout=5)
# ---------------------------------------------------
# Helper: JSON Fetch
# ---------------------------------------------------
def fetch_data(url):
try:
response = session.get(url, headers=HEADERS, timeout=5)
response.raise_for_status()
return response.json()
except:
return None
# ---------------------------------------------------
# Clean DF
# ---------------------------------------------------
def clean_dataframe(df):
df.columns = df.columns.str.strip()
str_cols = df.select_dtypes(include=["object"]).columns
df[str_cols] = df[str_cols].apply(lambda x: x.str.strip())
df.fillna(0.01, inplace=True)
return df
# ---------------------------------------------------
# Bhavcopy Fetch β†’ DataFrame
# ---------------------------------------------------
def fetch_bhavcopy_df(date):
"""Returns Cleaned Bhavcopy DF for EQ / BE / SM"""
date_str = date.strftime("%d-%m-%Y")
print(f"Attempting to fetch bhavcopy for date: {date_str}")
try:
df = nsepython.get_bhavcopy(date_str) # Direct call
if df is None or df.empty:
print(f"No bhavcopy data or empty DataFrame returned for {date_str}")
return None, None
actual_bhavcopy_date = datetime.datetime.strptime(
df.iloc[2, 2].strip(), "%d-%b-%Y"
).date()
df = clean_dataframe(df)
df_filtered = df[df.iloc[:, 1].isin(["EQ", "BE", "SM"])]
return df_filtered, actual_bhavcopy_date
except Exception as e:
print(f"An error occurred while fetching bhavcopy for {date_str}: {e}")
return None, None
# ---------------------------------------------------
# Stock Deliverable DF (security-wise archive)
# ---------------------------------------------------
def fetch_stock_df(nse_module, stock, start, end, series="ALL"):
"""Return DF for security-wise archive (deliverable + all columns)"""
df = nse_module.security_wise_archive(start, end, stock, series)
if df is not None and not df.empty:
return df
return None
# ---------------------------------------------------
# All NSE Indices β†’ DataFrames
# ---------------------------------------------------
def nse_indices_df():
url = "https://www.nseindia.com/api/allIndices"
data = fetch_data(url)
if data is None:
return None, None, None
df_dates = pd.DataFrame([data["dates"]])
df_meta = pd.DataFrame([{k: v for k, v in data.items() if k not in ["data", "dates"]}])
df_data = pd.DataFrame(data["data"])
return df_dates, df_meta, df_data
# ---------------------------------------------------
# Specific Index β†’ DataFrames
# ---------------------------------------------------
def nse_index_df(index_name="NIFTY 50"):
url = f"https://www.nseindia.com/api/equity-stockIndices?index={index_name.replace(' ', '%20')}"
data = fetch_data(url)
if data is None:
return None, None, None, None
df_market = pd.DataFrame([data["marketStatus"]])
df_adv = pd.DataFrame([data["advance"]])
df_meta = pd.DataFrame([data["metadata"]])
df_data = pd.DataFrame(data["data"])
return df_market, df_adv, df_meta, df_data
# ---------------------------------------------------
# Option Chain DF (Raw CE/PE)
# ---------------------------------------------------
def fetch_option_chain_df(symbol="NIFTY"):
url = f"https://www.nseindia.com/api/option-chain-indices?symbol={symbol}"
data = fetch_data(url)
if data and "filtered" in data:
ce_df = pd.DataFrame([r["CE"] for r in data["filtered"]["data"] if "CE" in r])
pe_df = pd.DataFrame([r["PE"] for r in data["filtered"]["data"] if "PE" in r])
return ce_df, pe_df
return None, None
# ---------------------------------------------------
# Pre-open market β†’ DataFrame
# ---------------------------------------------------
def nse_preopen_df(key="NIFTY"):
url = f"https://www.nseindia.com/api/market-data-pre-open?key={key}"
data = fetch_data(url)
if data:
return pd.DataFrame(data.get("data", []))
return None
# ---------------------------------------------------
# FNO Quote β†’ DataFrames
# ---------------------------------------------------
def nse_fno_df(symbol):
payload = nsepython.nse_quote(symbol) # Direct call
if not payload:
return None
# info + timestamps + volatility info
info_keys = list(payload["info"].keys()) + [
"fut_timestamp",
"opt_timestamp",
"maxVolatility",
"minVolatility",
"avgVolatility",
]
info_values = list(payload["info"].values()) + [
payload["fut_timestamp"],
payload["opt_timestamp"],
payload["underlyingInfo"]["volatility"][0]['maxVolatility'],
payload["underlyingInfo"]["volatility"][0]['minVolatility'],
payload["underlyingInfo"]["volatility"][0]['avgVolatility'],
]
df_info = pd.DataFrame([info_values], columns=info_keys)
df_mcap = pd.DataFrame(payload["underlyingInfo"].get("marketCap", {}))
df_fno_list = pd.DataFrame(payload.get("allSymbol", []), columns=["FNO_Symbol"])
# Core stock depth
df_stock = process_stocks_df(payload["stocks"])
return {
"info": df_info,
"mcap": df_mcap,
"fno": df_fno_list,
"stock": df_stock
}
# ---------------------------------------------------
# Handle nested stock β†’ DF
# ---------------------------------------------------
def process_stocks_df(data):
"""Return final merged stock DF only"""
trade_info_list, other_info_list = [], []
bid_ask_list = []
stock_values = []
trade_keys = other_keys = bidask_keys = stock_keys = None
for i, stock in enumerate(data):
meta = stock.pop("metadata")
depth = stock.pop("marketDeptOrderBook")
parent = stock
trade_info = depth.pop("tradeInfo", {})
other_info = depth.pop("otherInfo", {})
trade_info_list.append(trade_info)
other_info_list.append(other_info)
# bid / ask
bid_ask_row = {}
for side in ["bid", "ask"]:
for j, entry in enumerate(depth.get(side, []), start=1):
bid_ask_row[f"{side}_price_{j}"] = entry.get("price")
bid_ask_row[f"{side}_qty_{j}"] = entry.get("quantity")
bid_ask_list.append(bid_ask_row)
if i == 0:
trade_keys = list(trade_info.keys())
other_keys = list(other_info.keys())
bidask_keys = list(bid_ask_row.keys())
stock_keys = list(meta.keys()) + list(depth.keys()) + list(parent.keys())
stock_values.append(
list(meta.values()) + list(depth.values()) + list(parent.values())
)
df_trade = pd.DataFrame(trade_info_list, columns=trade_keys)
df_other = pd.DataFrame(other_info_list, columns=other_keys)
df_bidask = pd.DataFrame(bid_ask_list, columns=bidask_keys)
df_stock = pd.DataFrame(stock_values, columns=stock_keys)
df_stock = df_stock.drop(columns=['bid', 'ask', 'carryOfCost'], errors="ignore")
return pd.concat([df_stock, df_trade, df_other, df_bidask], axis=1)