fbmc-chronos2 / process_october_features.py
Evgueni Poloukarov
chore: merge with HF Space template - keep our README and requirements
330e408
"""Process October 2025 raw data into features for dataset extension.
This script processes the October 2025 raw data (downloaded Nov 13) and generates
feature files matching the 24-month dataset schema:
- Weather features: 375 features
- ENTSO-E features: ~1,863 features
- JAO features: 276 features (if October data exists)
Output files will be saved to data/processed/ with "_october" suffix.
Author: Claude
Date: 2025-11-14
"""
from pathlib import Path
import polars as pl
import sys
# Add src to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
from feature_engineering.engineer_weather_features import (
engineer_grid_level_features,
engineer_temporal_lags,
engineer_derived_features
)
from feature_engineering.engineer_entsoe_features import (
engineer_generation_features,
engineer_demand_features,
engineer_price_features,
engineer_hydro_storage_features,
engineer_pumped_storage_features,
engineer_load_forecast_features,
engineer_transmission_outage_features
)
def process_october_weather() -> pl.DataFrame:
"""Process October weather data into 375 features."""
print("\n" + "=" * 80)
print("PROCESSING OCTOBER WEATHER DATA")
print("=" * 80)
raw_file = Path("data/raw/weather_october_2025.parquet")
if not raw_file.exists():
raise FileNotFoundError(f"Missing: {raw_file}")
# Load October weather data
weather_df = pl.read_parquet(raw_file)
print(f"\nLoaded weather data: {weather_df.shape}")
print(f"Date range: {weather_df['timestamp'].min()} to {weather_df['timestamp'].max()}")
# Engineer features using existing modules
features = engineer_grid_level_features(weather_df)
features = engineer_temporal_lags(features)
features = engineer_derived_features(features)
# Save to processed directory
output_file = Path("data/processed/features_weather_october.parquet")
features.write_parquet(output_file)
print(f"\n[OK] Weather features saved: {output_file}")
print(f" Shape: {features.shape}")
print(f" Features: {len(features.columns) - 1} (+ timestamp)")
return features
def process_october_entsoe() -> pl.DataFrame:
"""Process October ENTSO-E data into ~1,863 features."""
print("\n" + "=" * 80)
print("PROCESSING OCTOBER ENTSO-E DATA")
print("=" * 80)
# Check which ENTSO-E files exist
raw_dir = Path("data/raw")
processed_dir = Path("data/processed")
required_files = {
'generation': raw_dir / "entsoe_generation_october_2025.parquet",
'demand': raw_dir / "entsoe_demand_october_2025.parquet",
'prices': raw_dir / "entsoe_prices_october_2025.parquet",
'hydro_storage': raw_dir / "entsoe_hydro_storage_october_2025.parquet",
'pumped_storage': raw_dir / "entsoe_pumped_storage_october_2025.parquet",
'load_forecast': raw_dir / "entsoe_load_forecast_october_2025.parquet",
'transmission_outages': raw_dir / "entsoe_transmission_outages_october_2025.parquet"
}
# Load CNEC master list (required for transmission outage features)
cnec_master_path = processed_dir / "cnecs_master_176.csv"
if not cnec_master_path.exists():
raise FileNotFoundError(f"Missing CNEC master list: {cnec_master_path}")
cnec_master_df = pl.read_csv(cnec_master_path)
print(f"\nLoaded CNEC master list: {cnec_master_df.shape}")
# Verify all files exist
for name, file_path in required_files.items():
if not file_path.exists():
print(f"WARNING: Missing {name} file: {file_path}")
# Load all datasets
print("\nLoading ENTSO-E datasets...")
generation_df = pl.read_parquet(required_files['generation'])
demand_df = pl.read_parquet(required_files['demand'])
prices_df = pl.read_parquet(required_files['prices'])
hydro_storage_df = pl.read_parquet(required_files['hydro_storage'])
pumped_storage_df = pl.read_parquet(required_files['pumped_storage'])
load_forecast_df = pl.read_parquet(required_files['load_forecast'])
transmission_outages_df = pl.read_parquet(required_files['transmission_outages'])
print(f" Generation: {generation_df.shape}")
print(f" Demand: {demand_df.shape}")
print(f" Prices: {prices_df.shape}")
print(f" Hydro storage: {hydro_storage_df.shape}")
print(f" Pumped storage: {pumped_storage_df.shape}")
print(f" Load forecast: {load_forecast_df.shape}")
print(f" Transmission outages: {transmission_outages_df.shape}")
# Engineer features for each category
print("\nEngineering ENTSO-E features...")
# Generation features (~228 features)
gen_features = engineer_generation_features(generation_df)
# Demand features (24 features)
demand_features = engineer_demand_features(demand_df)
# Price features (24 features)
price_features = engineer_price_features(prices_df)
# Hydro storage features (12 features)
hydro_features = engineer_hydro_storage_features(hydro_storage_df)
# Pumped storage features (10 features)
pumped_features = engineer_pumped_storage_features(pumped_storage_df)
# Load forecast features (12 features)
load_forecast_features = engineer_load_forecast_features(load_forecast_df)
# Transmission outage features (176 features - ALL CNECs)
# Create hourly range for October (Oct 1-14, 2025)
import datetime
october_start = datetime.datetime(2025, 10, 1, 0, 0)
october_end = datetime.datetime(2025, 10, 14, 23, 0)
hourly_range = pl.DataFrame({
'timestamp': pl.datetime_range(
october_start,
october_end,
interval='1h',
eager=True
)
})
transmission_features = engineer_transmission_outage_features(
transmission_outages_df,
cnec_master_df,
hourly_range
)
# Merge all features
print("\nMerging all ENTSO-E features...")
features = gen_features
# Fix timezone and precision issues - ensure all timestamps are timezone-naive and nanosecond precision
features = features.with_columns([
pl.col('timestamp').dt.replace_time_zone(None).dt.cast_time_unit('ns').alias('timestamp')
])
for feat_df, name in [
(demand_features, "demand"),
(price_features, "prices"),
(hydro_features, "hydro_storage"),
(pumped_features, "pumped_storage"),
(load_forecast_features, "load_forecast"),
(transmission_features, "transmission_outages")
]:
# Ensure timezone and precision consistency
if 'timestamp' in feat_df.columns:
feat_df = feat_df.with_columns([
pl.col('timestamp').dt.replace_time_zone(None).dt.cast_time_unit('ns').alias('timestamp')
])
features = features.join(feat_df, on='timestamp', how='left', coalesce=True)
print(f" Added {name}: {len(feat_df.columns) - 1} features")
# Resample to hourly (some datasets have sub-hourly data)
print("\nResampling to hourly...")
features = features.with_columns([
pl.col('timestamp').dt.truncate('1h').alias('timestamp')
])
# Group by hour and take mean (for any sub-hourly values)
agg_exprs = [pl.col(c).mean().alias(c) for c in features.columns if c != 'timestamp']
features = features.group_by('timestamp').agg(agg_exprs).sort('timestamp')
print(f" Resampled to {len(features)} hourly rows")
# Ensure complete 336-hour range (Oct 1-14) - fill missing hours with forward-fill
october_start = datetime.datetime(2025, 10, 1, 0, 0)
october_end = datetime.datetime(2025, 10, 14, 23, 0)
complete_range = pl.DataFrame({
'timestamp': pl.datetime_range(
october_start,
october_end,
interval='1h',
eager=True
)
})
# Cast complete_range timestamp to match features precision
complete_range = complete_range.with_columns([
pl.col('timestamp').dt.cast_time_unit('ns').alias('timestamp')
])
# Join to complete range and forward-fill missing values
features = complete_range.join(features, on='timestamp', how='left')
# Forward-fill missing values
fill_exprs = []
for col in features.columns:
if col != 'timestamp':
fill_exprs.append(pl.col(col).forward_fill().alias(col))
if fill_exprs:
features = features.with_columns(fill_exprs)
missing_count = 336 - len(features.filter(pl.all_horizontal(pl.all().is_not_null())))
if missing_count > 0:
print(f" Forward-filled {missing_count} missing hours")
print(f" Final shape: {len(features)} hourly rows (Oct 1-14)")
# Save to processed directory
output_file = Path("data/processed/features_entsoe_october.parquet")
features.write_parquet(output_file)
print(f"\n[OK] ENTSO-E features saved: {output_file}")
print(f" Shape: {features.shape}")
print(f" Features: {len(features.columns) - 1} (+ timestamp)")
return features
def process_october_jao() -> pl.DataFrame | None:
"""Process October JAO data into 276 features (if data exists)."""
print("\n" + "=" * 80)
print("PROCESSING OCTOBER JAO DATA")
print("=" * 80)
# Check if October JAO data exists
raw_file = Path("data/raw/jao_october_2025.parquet")
if not raw_file.exists():
print(f"\nINFO: No October JAO data found at {raw_file}")
print("This is expected - JAO features may be historical only.")
print("Skipping JAO feature engineering for October.")
return None
# If data exists, process it
from feature_engineering.engineer_jao_features import (
engineer_jao_features_all
)
jao_df = pl.read_parquet(raw_file)
print(f"\nLoaded JAO data: {jao_df.shape}")
features = engineer_jao_features_all(jao_df)
# Save to processed directory
output_file = Path("data/processed/features_jao_october.parquet")
features.write_parquet(output_file)
print(f"\n[OK] JAO features saved: {output_file}")
print(f" Shape: {features.shape}")
return features
def validate_october_features():
"""Validate October feature files match expected schema."""
print("\n" + "=" * 80)
print("VALIDATING OCTOBER FEATURES")
print("=" * 80)
# Load October feature files
weather_file = Path("data/processed/features_weather_october.parquet")
entsoe_file = Path("data/processed/features_entsoe_october.parquet")
jao_file = Path("data/processed/features_jao_october.parquet")
weather_df = pl.read_parquet(weather_file)
entsoe_df = pl.read_parquet(entsoe_file)
print(f"\nWeather features: {weather_df.shape}")
print(f" Rows (expected 336): {len(weather_df)}")
print(f" Features (expected 375): {len(weather_df.columns) - 1}")
print(f"\nENTSO-E features: {entsoe_df.shape}")
print(f" Rows (expected 336): {len(entsoe_df)}")
print(f" Features (expected ~1,863): {len(entsoe_df.columns) - 1}")
if jao_file.exists():
jao_df = pl.read_parquet(jao_file)
print(f"\nJAO features: {jao_df.shape}")
print(f" Rows (expected 336): {len(jao_df)}")
print(f" Features (expected 276): {len(jao_df.columns) - 1}")
else:
print("\nJAO features: Not generated (no October JAO data)")
# Validate row count (14 days × 24 hours = 336)
expected_rows = 336
issues = []
if len(weather_df) != expected_rows:
issues.append(f"Weather rows: {len(weather_df)} (expected {expected_rows})")
if len(entsoe_df) != expected_rows:
issues.append(f"ENTSO-E rows: {len(entsoe_df)} (expected {expected_rows})")
# Validate date range (Oct 1-14, 2025)
weather_start = weather_df['timestamp'].min()
weather_end = weather_df['timestamp'].max()
entsoe_start = entsoe_df['timestamp'].min()
entsoe_end = entsoe_df['timestamp'].max()
print(f"\nDate ranges:")
print(f" Weather: {weather_start} to {weather_end}")
print(f" ENTSO-E: {entsoe_start} to {entsoe_end}")
# Check for null values
weather_nulls = weather_df.null_count().sum_horizontal().to_list()[0]
entsoe_nulls = entsoe_df.null_count().sum_horizontal().to_list()[0]
print(f"\nNull value counts:")
print(f" Weather: {weather_nulls} nulls")
print(f" ENTSO-E: {entsoe_nulls} nulls")
# Report validation results
if issues:
print("\n[WARNING] Validation issues found:")
for issue in issues:
print(f" - {issue}")
else:
print("\n[OK] All validation checks passed!")
return len(issues) == 0
def main():
"""Main execution: Process all October data."""
print("\n" + "=" * 80)
print("OCTOBER 2025 FEATURE ENGINEERING")
print("Processing raw data into features for dataset extension")
print("=" * 80)
try:
# Process each feature category
weather_features = process_october_weather()
entsoe_features = process_october_entsoe()
jao_features = process_october_jao() # May return None
# Validate features
validation_passed = validate_october_features()
if validation_passed:
print("\n" + "=" * 80)
print("SUCCESS: October feature engineering complete!")
print("=" * 80)
print("\nGenerated files:")
print(" - data/processed/features_weather_october.parquet")
print(" - data/processed/features_entsoe_october.parquet")
if jao_features is not None:
print(" - data/processed/features_jao_october.parquet")
print("\nNext steps:")
print(" 1. Merge October features into unified dataset")
print(" 2. Append to 24-month dataset (17,544 -> 17,880 rows)")
print(" 3. Upload extended dataset to HuggingFace")
else:
print("\n[ERROR] Validation failed - please review issues above")
sys.exit(1)
except Exception as e:
# Avoid Unicode errors on Windows console
error_msg = str(e).encode('ascii', 'replace').decode('ascii')
print(f"\n[ERROR] Feature engineering failed: {error_msg}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()