Spaces:
Running
Running
| import gradio as gr | |
| import torch | |
| from kernels import get_kernel | |
| import io | |
| import contextlib | |
| # ============================================================ | |
| # βοΈ Setup | |
| # ============================================================ | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| if torch.cuda.is_available(): | |
| flash_attn = get_kernel("kernels-community/vllm-flash-attn3") | |
| flash_attn_func = flash_attn.flash_attn_func | |
| else: | |
| flash_attn_func = None # CPU fallback | |
| # ============================================================ | |
| # π§ Reference attention (PyTorch SDPA) | |
| # ============================================================ | |
| def reference_attention(query, key, value, causal=False): | |
| query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value)) | |
| with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH): | |
| out = torch.nn.functional.scaled_dot_product_attention(query, key, value, is_causal=causal) | |
| return out.transpose(1, 2).contiguous() | |
| # ============================================================ | |
| # ποΈ Test function | |
| # ============================================================ | |
| def run_flash_attention(B=2, S=5, H=4, D=8, seed=42): | |
| B, S, H, D = int(B), int(S), int(H), int(D) | |
| torch.manual_seed(int(seed)) | |
| dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| q = k = v = torch.randn(B, S, H, D, device=device, dtype=dtype) | |
| log = io.StringIO() | |
| with contextlib.redirect_stdout(log): | |
| print(f"Running FlashAttention Tests on device: {device}") | |
| print(f"Input shape: B={B}, S={S}, H={H}, D={D}\n") | |
| # Always run PyTorch reference attention | |
| out_ref = reference_attention(q, k, v) | |
| print(f"β Reference attention OK: {out_ref.shape}\n") | |
| # Run FlashAttention if CUDA available | |
| if flash_attn_func is not None: | |
| try: | |
| out_flash, _ = flash_attn_func(q, k, v, causal=False) | |
| print("β‘ FlashAttention (non-causal):") | |
| print(f" Output: {out_flash.shape}") | |
| print(f" Close to reference: {torch.allclose(out_flash, out_ref, atol=1e-2, rtol=1e-3)}\n") | |
| out_flash_causal, _ = flash_attn_func(q, k, v, causal=True) | |
| out_ref_causal = reference_attention(q, k, v, causal=True) | |
| print("β‘ FlashAttention (causal):") | |
| print(f" Output: {out_flash_causal.shape}") | |
| print(f" Close to reference: {torch.allclose(out_flash_causal, out_ref_causal, atol=1e-2, rtol=1e-3)}\n") | |
| except Exception as e: | |
| print("β FlashAttention test failed:") | |
| print(str(e)) | |
| else: | |
| print("β οΈ CUDA not available β FlashAttention test skipped.") | |
| print("Using PyTorch SDPA (reference) only.\n") | |
| return log.getvalue() | |
| # ============================================================ | |
| # π§© Gradio UI | |
| # ============================================================ | |
| with gr.Blocks(title="Flash Attention Kernel Tester") as demo: | |
| gr.Markdown("## β‘ Flash Attention Kernel Tester") | |
| gr.Markdown("Compare PyTorch SDPA vs FlashAttention implementations interactively. Works on both CPU and CUDA.") | |
| with gr.Row(): | |
| B = gr.Slider(1, 8, value=2, step=1, label="Batch Size (B)") | |
| S = gr.Slider(2, 10, value=5, step=1, label="Sequence Length (S)") | |
| with gr.Row(): | |
| H = gr.Slider(1, 8, value=4, step=1, label="Number of Heads (H)") | |
| D = gr.Slider(4, 64, value=8, step=4, label="Head Dim (D)") | |
| seed = gr.Number(value=42, label="Random Seed") | |
| run_btn = gr.Button("π Run Tests") | |
| output = gr.Textbox(label="Console Output", lines=25, show_copy_button=True) | |
| run_btn.click(run_flash_attention, inputs=[B, S, H, D, seed], outputs=output) | |
| demo.launch() | |