matrix-ai / app /services /chat_service.py
ruslanmv's picture
First commit
a6720b5
# app/services/chat_service.py
from __future__ import annotations
import logging
import os
import re
import threading
from pathlib import Path
from typing import List, Tuple, Dict, Optional, Iterable, Generator
from ..core.config import Settings
from ..core.inference.client import ChatClient # ← multi-provider cascade (GROQ→Gemini→HF)
from ..core.rag.retriever import Retriever
logger = logging.getLogger(__name__)
try:
from sentence_transformers import CrossEncoder # optional
except Exception:
CrossEncoder = None # type: ignore
# Tighter, grounding-first instruction + anti-question/label rules
SYSTEM_PROMPT = (
"You are MATRIX-AI, a concise assistant for the Matrix EcoSystem.\n"
"Use the provided CONTEXT strictly when present. If the answer is not supported by the context, say you don't know.\n"
"Reply in 2–4 short sentences. Do NOT include labels like 'Question:' or 'Answer:' in your output.\n"
"Do NOT ask me questions unless I explicitly asked you to. Do NOT repeat yourself.\n"
)
# Hard stops if the model tries to start a new question/role header
STOP_SEQS: List[str] = [
"\nQuestion:", "Question:", "\nQ:", "Q:",
"\nUser:", "User:", "\nAssistant:", "Assistant:"
]
# ----------------------------
# Thread-safe singleton retriever
# ----------------------------
_retriever_instance: Optional[Retriever] = None
_retriever_lock = threading.Lock()
def get_retriever(settings: Settings) -> Optional[Retriever]:
"""
Initialize and cache the Retriever once (thread-safe).
If no KB is present, returns None and logs that we run LLM-only.
"""
global _retriever_instance
if _retriever_instance is not None:
return _retriever_instance
kb_path = os.getenv("RAG_KB_PATH", "data/kb.jsonl")
if not Path(kb_path).exists():
logger.info("RAG KB not found at %s — running LLM-only.", kb_path)
return None
with _retriever_lock:
if _retriever_instance is not None:
return _retriever_instance
try:
_retriever_instance = Retriever(kb_path=kb_path, top_k=settings.rag.top_k)
logger.info("RAG enabled with KB at %s (top_k=%d)", kb_path, settings.rag.top_k)
except Exception as e:
logger.warning("RAG disabled (failed to initialize Retriever: %s)", e)
_retriever_instance = None
return _retriever_instance
# ---------- anti-repetition / anti-label helpers ----------
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?])\s+')
_NORM = re.compile(r'[^a-z0-9\s]+')
def _norm_sentence(s: str) -> str:
s = s.lower().strip()
s = _NORM.sub(' ', s)
s = re.sub(r'\s+', ' ', s)
return s
def _jaccard(a: str, b: str) -> float:
ta = set(a.split())
tb = set(b.split())
if not ta or not tb:
return 0.0
return len(ta & tb) / max(1, len(ta | tb))
def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float = 0.88) -> str:
t = re.sub(r'\s+', ' ', text).strip()
if not t:
return t
parts = _SENT_SPLIT.split(t)
out: List[str] = []
norms: List[str] = []
for s in parts:
ns = _norm_sentence(s)
if not ns:
continue
if any(_jaccard(prev, ns) >= sim_threshold for prev in norms):
continue
out.append(s.strip())
norms.append(ns)
if len(out) >= max_sentences:
break
return ' '.join(out).strip()
# Strip common label patterns
_LABEL_PREFIX = re.compile(r'^\s*(?:Answer:|A:)\s*', re.IGNORECASE)
_LABEL_INLINE_Q = re.compile(r'\s*(?:Question:|Q:)\s*$', re.IGNORECASE)
def _strip_labels(text: str) -> str:
s = _LABEL_PREFIX.sub('', text)
# If the model tries to end with "Question:" remove that tail prompt
s = _LABEL_INLINE_Q.sub('', s)
# also remove mid-text accidental "Answer:" fragments
s = re.sub(r'\b(?:Answer:|A:)\s*', '', s, flags=re.IGNORECASE)
return s.strip()
# ---------- RAG utilities (ranking & snippets) ----------
_ALIAS_TABLE: Dict[str, List[str]] = {
"matrixhub": ["matrix hub", "hub api", "catalog", "registry", "cas"],
"mcp": ["model context protocol", "manifest", "server manifest", "admin api"],
"agent-matrix": ["matrix agents", "matrix ecosystem", "matrix toolkit"],
}
_WORD_RE = re.compile(r"[A-Za-z0-9_]+")
def _normalize(text: str) -> List[str]:
return [t.lower() for t in _WORD_RE.findall(text)]
def _expand_query(q: str) -> str:
ql = q.lower()
extras: List[str] = []
for canon, variants in _ALIAS_TABLE.items():
if any(v in ql for v in ([canon] + variants)):
extras.extend([canon] + variants)
if extras:
return q + " | " + " ".join(sorted(set(extras)))
return q
def _keyword_overlap_score(query: str, text: str) -> float:
q_tokens = set(_normalize(query))
d_tokens = set(_normalize(text))
if not q_tokens or not d_tokens:
return 0.0
inter = len(q_tokens & d_tokens)
union = len(q_tokens | d_tokens)
return inter / max(1, union)
def _domain_boost(text: str) -> float:
t = text.lower()
boost = 0.0
for term in ("matrixhub", "hub api", "catalog", "mcp", "server manifest", "cas"):
if term in t:
boost += 0.05
return min(boost, 0.25)
def _best_paragraphs(text: str, query: str, max_chars: int = 700) -> str:
paras = [p.strip() for p in re.split(r"\n\s*\n", text) if p.strip()]
if not paras:
return text[:max_chars]
scored = [(p, _keyword_overlap_score(query, p)) for p in paras]
scored.sort(key=lambda x: x[1], reverse=True)
picked: List[str] = []
used = 0
for p, _s in scored[:4]:
if used >= max_chars:
break
picked.append(p)
used += len(p) + 2
if used >= max_chars or len(picked) >= 2:
break
return "\n".join(picked)
def _cross_encoder_scores(model: Optional["CrossEncoder"], query: str, docs: List[Dict], max_pairs: int = 50) -> Optional[List[float]]:
if not model:
return None
try:
pairs = [(query, d["text"][:1200]) for d in docs[:max_pairs]]
return list(model.predict(pairs))
except Exception as e:
logger.warning("Cross-encoder scoring failed; continuing without it (%s)", e)
return None
def _rerank_docs(docs: List[Dict], query: str, k_final: int, reranker: Optional["CrossEncoder"] = None) -> List[Dict]:
if not docs:
return []
vec_scores = [float(d.get("score", 0.0)) for d in docs]
if vec_scores:
vmin, vmax = min(vec_scores), max(vec_scores)
rng = max(1e-6, (vmax - vmin))
vec_norm = [(v - vmin) / rng for v in vec_scores]
else:
vec_norm = [0.0] * len(docs)
lex_scores = [_keyword_overlap_score(query, d["text"]) for d in docs]
boosts = [_domain_boost(d["text"]) for d in docs]
ce_scores = _cross_encoder_scores(reranker, query, docs)
if ce_scores:
cmin, cmax = min(ce_scores), max(ce_scores)
crng = max(1e-6, (cmax - cmin))
ce_norm = [(c - cmin) / crng for c in ce_scores]
else:
ce_norm = None
merged: List[Tuple[float, Dict]] = []
for i, d in enumerate(docs):
score = 0.55 * vec_norm[i] + 0.35 * lex_scores[i] + 0.10 * boosts[i]
if ce_norm is not None:
score = 0.80 * score + 0.20 * ce_norm[i]
merged.append((score, d))
merged.sort(key=lambda x: x[0], reverse=True)
return [d for _s, d in merged[:k_final]]
def _build_context_from_docs(docs: List[Dict], query: str, max_blocks: int = 4) -> Tuple[str, List[str]]:
blocks: List[str] = []
sources: List[str] = []
for i, d in enumerate(docs[:max_blocks]):
snip = _best_paragraphs(d["text"], query, max_chars=700)
src = d.get("source", f"kb:{i}")
blocks.append(f"[{i+1}] {snip}\n(source: {src})")
sources.append(src)
if not blocks:
return "", []
prelude = "CONTEXT (use only these facts; if missing, say you don't know):"
return prelude + "\n\n" + "\n\n".join(blocks), sources
# ----------------------------
# Service
# ----------------------------
class ChatService:
"""
High-level Q&A service with optional RAG. Uses the multi-provider ChatClient,
honoring provider_order from configs/settings.yaml (e.g., groq → gemini → router).
"""
def __init__(self, settings: Settings):
self.settings = settings
# Log backend + provider order for traceability
try:
order = getattr(settings, "provider_order", ["router"])
logger.info("Chat backend=%s | Provider order=%s", settings.chat_backend, order)
except Exception:
logger.info("Chat backend=%s", getattr(settings, "chat_backend", "unknown"))
# Use the multi-provider cascade: GROQ → Gemini → HF Router
self.client = ChatClient(settings)
# RAG components
self.retriever = get_retriever(settings)
# Optional cross-encoder reranker
self.reranker = None
use_rerank = os.getenv("RAG_RERANK", "true").lower() in ("1", "true", "yes")
if use_rerank and CrossEncoder is not None:
try:
self.reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-2-v2")
logger.info("RAG cross-encoder reranker enabled.")
except Exception as e:
logger.warning("Reranker disabled: %s", e)
# ---------- RAG core ----------
def _retrieve_best(self, query: str) -> Tuple[str, List[str]]:
if not self.retriever:
return "", []
expanded = _expand_query(query)
k_base = max(4, int(self.settings.rag.top_k) * 5)
try:
cands = self.retriever.retrieve(expanded, k=k_base)
except Exception as e:
logger.warning("Retriever failed (%s); falling back to LLM-only.", e)
return "", []
if not cands:
return "", []
top = _rerank_docs(cands, query, k_final=max(3, self.settings.rag.top_k), reranker=self.reranker)
ctx, sources = _build_context_from_docs(top, query, max_blocks=max(3, self.settings.rag.top_k))
return ctx, sources
def _augment(self, query: str) -> Tuple[str, List[str]]:
ctx, sources = self._retrieve_best(query)
if ctx:
user_msg = (
f"{ctx}\n\n"
"Based only on the context above, answer succinctly in 2–4 sentences.\n"
f"{query}"
)
else:
user_msg = f"Answer succinctly in 2–4 sentences. Do not repeat yourself.\n{query}"
return user_msg, sources
# ---------- Non-stream ----------
def answer_with_sources(self, query: str) -> Tuple[str, List[str]]:
"""
Returns a concise answer and the list of source identifiers (if any).
Uses the cascade in non-streaming mode (always returns a string).
"""
user_msg, sources = self._augment(query)
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_msg},
]
text = self.client.chat(
messages,
temperature=self.settings.model.temperature,
max_new_tokens=self.settings.model.max_new_tokens,
stream=False,
)
# Post-process for brevity and cleanliness
text = _strip_labels(_squash_repetition(text, max_sentences=4, sim_threshold=0.88))
return text, sources
# ---------- Stream ----------
def stream_answer(self, query: str) -> Iterable[str]:
"""
Yields chunks of text as they are produced.
On GROQ, this is true token streaming; on Gemini/HF, it may yield once.
"""
user_msg, _ = self._augment(query)
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_msg},
]
raw = self.client.chat(
messages,
temperature=self.settings.model.temperature,
max_new_tokens=self.settings.model.max_new_tokens,
stream=True,
)
# Normalize to a generator of strings
def _iter_chunks(gen_or_text: Generator[str, None, None] | str) -> Generator[str, None, None]:
if isinstance(gen_or_text, str):
yield gen_or_text
else:
for chunk in gen_or_text:
if chunk:
yield chunk
buf = ""
emitted = ""
try:
for token in _iter_chunks(raw):
buf += token
cleaned = _squash_repetition(buf, max_sentences=4, sim_threshold=0.88)
cleaned = _strip_labels(cleaned)
if len(cleaned) < len(emitted):
# Cleaning shortened text; wait for more tokens
continue
delta = cleaned[len(emitted):]
if delta:
emitted = cleaned
yield delta
except Exception as e:
logger.error("Streaming error: %s", e)
# Best-effort final flush
final = _strip_labels(_squash_repetition(buf, max_sentences=4, sim_threshold=0.88)).strip()
if final and final != emitted:
yield final[len(emitted):]