atsuki-yamaguchi's picture
Upload README.md with huggingface_hub
20c929f verified
metadata
license: apache-2.0
datasets:
  - allenai/MADLAD-400
language:
  - ig
base_model:
  - allenai/OLMo-2-1124-7B-Instruct

OLMo 2 1124 7B Instruct for Igbo: FFT

This model is built on top of OLMo 2 1124 7B Instruct adapted for Igbo using 200M target language tokens sampled from MADLAD-400. The model is adapted using the FFT approach.

Model Description

Model Sources

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "ssu-project/OLMo-2-1124-7B-Instruct-ig-fft"
)
tokenizer = AutoTokenizer.from_pretrained(
    "ssu-project/OLMo-2-1124-7B-Instruct-ig-fft"
)

Citation

@misc{yamaguchi2025mitigatingcatastrophicforgettingtarget,
    title={Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates}, 
    author={Atsuki Yamaguchi and Terufumi Morishita and Aline Villavicencio and Nikolaos Aletras},
    year={2025},
    eprint={2512.04844},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2512.04844}, 
}