|
|
--- |
|
|
library_name: transformers |
|
|
base_model: |
|
|
- Zyphra/ZAYA1-reasoning-base |
|
|
--- |
|
|
|
|
|
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [Zyphra/ZAYA1-reasoning-base](https://huggingface.co/Zyphra/ZAYA1-reasoning-base). |
|
|
|
|
|
### Example usage: |
|
|
|
|
|
```python |
|
|
from transformers import pipeline |
|
|
model_id = "tiny-random/zaya1" |
|
|
pipe = pipeline('text-generation', model=model_id, |
|
|
device='cuda', dtype="bfloat16") |
|
|
print(pipe('Hello World!')) |
|
|
``` |
|
|
|
|
|
### Codes to create this repo: |
|
|
|
|
|
```python |
|
|
import json |
|
|
from pathlib import Path |
|
|
|
|
|
import accelerate |
|
|
import torch |
|
|
from huggingface_hub import file_exists, hf_hub_download |
|
|
from transformers import ( |
|
|
AutoConfig, |
|
|
AutoModelForCausalLM, |
|
|
AutoProcessor, |
|
|
AutoTokenizer, |
|
|
GenerationConfig, |
|
|
set_seed, |
|
|
) |
|
|
|
|
|
source_model_id = "Zyphra/ZAYA1-reasoning-base" |
|
|
save_folder = "/tmp/tiny-random/zaya1" |
|
|
|
|
|
processor = AutoTokenizer.from_pretrained( |
|
|
source_model_id, trust_remote_code=True) |
|
|
processor.save_pretrained(save_folder) |
|
|
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
|
config_json = json.load(f) |
|
|
config_json['hidden_size'] = 512 |
|
|
config_json['num_attention_heads'] = 4 |
|
|
config_json['num_key_value_heads'] = 1 |
|
|
config_json['num_hidden_layers'] = 2 |
|
|
# bug. need to first set False and then hack |
|
|
config_json['tie_word_embeddings'] = False |
|
|
config_json['cca_num_q_heads'] = [2, 0] |
|
|
config_json['ffn_hidden_size_list'] = [0, 32] |
|
|
config_json['num_query_groups_list'] = [1, 0] |
|
|
config_json['zaya_layers'] = ['a', 16] |
|
|
config_json['zaya_mlp_expansion'] = [0, 8] |
|
|
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
|
save_folder, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
print(config) |
|
|
torch.set_default_dtype(torch.bfloat16) |
|
|
model = AutoModelForCausalLM.from_config(config) |
|
|
model.lm_head = None |
|
|
torch.set_default_dtype(torch.float32) |
|
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
|
model.generation_config = GenerationConfig.from_pretrained( |
|
|
source_model_id, trust_remote_code=True, |
|
|
) |
|
|
set_seed(42) |
|
|
model = model.cpu() |
|
|
with torch.no_grad(): |
|
|
for name, p in sorted(model.named_parameters()): |
|
|
torch.nn.init.normal_(p, 0, 0.1) |
|
|
print(name, p.shape) |
|
|
model.save_pretrained(save_folder) |
|
|
with open(f"{save_folder}/config.json", 'r', encoding='utf-8') as f: |
|
|
config_json = json.load(f) |
|
|
config_json['tie_word_embeddings'] = True |
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
``` |
|
|
|
|
|
### Printing the model: |
|
|
|
|
|
```text |
|
|
ZayaForCausalLM( |
|
|
(model): ZayaModel( |
|
|
(embed_tokens): Embedding(262272, 512, padding_idx=0) |
|
|
(layers): ModuleList( |
|
|
(0): ZayaDecoderATTLayer( |
|
|
(self_attn): ZayaSdpaAttention( |
|
|
(o_proj): Linear(in_features=256, out_features=512, bias=False) |
|
|
(qkv): CCA( |
|
|
(linear_q): Linear(in_features=512, out_features=256, bias=False) |
|
|
(linear_k): Linear(in_features=512, out_features=128, bias=False) |
|
|
(val_proj1): Linear(in_features=512, out_features=64, bias=False) |
|
|
(val_proj2): Linear(in_features=512, out_features=64, bias=False) |
|
|
(conv_qk): Sequential( |
|
|
(0): Conv1d(384, 384, kernel_size=(2,), stride=(1,), groups=384) |
|
|
(1): Conv1d(384, 384, kernel_size=(2,), stride=(1,), groups=3) |
|
|
) |
|
|
) |
|
|
) |
|
|
(input_norm): ZayaRMSNorm((512,), eps=1e-05) |
|
|
(res_scale): ResidualScaling() |
|
|
) |
|
|
(1): ZayaDecoderMLPLayer( |
|
|
(zaya_block): ZayaBlock( |
|
|
(router): ZayaRouter( |
|
|
(down_proj): Linear(in_features=512, out_features=8, bias=True) |
|
|
(rmsnorm_eda): ZayaRMSNorm((8,), eps=1e-06) |
|
|
(non_linearity): GELU(approximate='none') |
|
|
(router_mlp): Sequential( |
|
|
(0): Linear(in_features=8, out_features=8, bias=True) |
|
|
(1): GELU(approximate='none') |
|
|
(2): Linear(in_features=8, out_features=8, bias=True) |
|
|
(3): GELU(approximate='none') |
|
|
(4): Linear(in_features=8, out_features=17, bias=False) |
|
|
) |
|
|
) |
|
|
(experts): SequentialMLP( |
|
|
(local_experts): ModuleList( |
|
|
(0-15): 16 x MLP( |
|
|
(linear_fc1): Linear(in_features=512, out_features=32, bias=False) |
|
|
(linear_fc2): Linear(in_features=16, out_features=512, bias=False) |
|
|
) |
|
|
) |
|
|
) |
|
|
) |
|
|
(input_norm): ZayaRMSNorm((512,), eps=1e-05) |
|
|
(res_scale): ResidualScaling() |
|
|
) |
|
|
) |
|
|
(res_scale): ResidualScaling() |
|
|
(final_norm): ZayaRMSNorm((512,), eps=1e-05) |
|
|
(rotary_emb): ZayaRotaryEmbedding() |
|
|
) |
|
|
(lm_head): None |
|
|
) |
|
|
``` |