Gemma-3-4B Fine-tuned for Bean Disease Classification
This model is a fine-tuned version of google/gemma-3-4b-it for classifying bean plant diseases.
Model Description
- Base Model: Gemma-3-4B-IT (Vision)
- Fine-tuning Method: LoRA (r=8, alpha=16)
- Dataset: beans (100 samples)
- Task: Image captioning / disease classification
- Final Validation Loss: 0.001 (excellent!)
Classes
- Healthy bean plant
- Angular leaf spot disease
- Bean rust disease
Usage
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from peft import PeftModel
from PIL import Image
import torch
# Load base model
base_model = Gemma3ForConditionalGeneration.from_pretrained(
"google/gemma-3-4b-it",
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "younaice/gemma3-4b-bean-captioning")
processor = AutoProcessor.from_pretrained("younaice/gemma3-4b-bean-captioning")
# Prepare input
image = Image.open("bean_plant.jpg")
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this plant image."}
]
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
# Generate
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=False)
response = processor.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- Epochs: 10
- Batch Size: 1 (effective: 4 with gradient accumulation)
- Learning Rate: 5e-5
- Precision: FP16
- Hardware: NVIDIA T4 GPU
- Training Time: ~25 minutes
- Max Sequence Length: 512 tokens
Performance
- Final Training Loss: 0.69
- Final Validation Loss: 0.001
- Accuracy: Very high (based on validation loss)
Limitations
- Trained on 100 images for demonstration purposes
- Best suited for the 3 specific bean disease types in the training data
- May not generalize to other bean varieties or diseases
- Should be validated on real-world data before production use
Citation
If you use this model, please cite:
@misc{gemma3-bean-captioning,
author = {younaice},
title = {Gemma-3-4B Fine-tuned for Bean Disease Classification},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/younaice/gemma3-4b-bean-captioning}}
}
License
This model inherits the Gemma license from the base model. Please refer to the Gemma license for usage terms.
- Downloads last month
- 58