ACT Model for ALOHA TransferCube Task
A lightweight Action Chunking with Transformers (ACT) model trained on the ALOHA simulation TransferCube task.
Model Description
| Property | Value |
|---|---|
| Architecture | ACT (Action Chunking with Transformers) |
| Parameters | 52M |
| Task | ALOHA TransferCube-v0 |
| Training Steps | 60,000 |
| Batch Size | 32 |
| Success Rate | ~42% |
Training Data
- Dataset: lerobot/aloha_sim_transfer_cube_human_image
- Episodes: 50 human demonstrations
- Frames: 20,000
Task Description
The TransferCube task requires a bimanual robot to:
- Pick up a red cube with the right arm
- Transfer the cube to the left gripper
Demo Video
Training Environment
- GPU: RTX A6000
- Framework: LeRobot 0.4.3
- Training Time: Around 11.5 hours
Usage
Installation
pip install lerobot gym-aloha
Training
lerobot-train \
--policy.type=act \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human_image \
--env.type=aloha \
--env.task=AlohaTransferCube-v0 \
--batch_size=32 \
--steps=60000 \
--eval_freq=5000 \
--output_dir=./outputs/act_aloha_cube_best \
--wandb.enable=false \
--policy.push_to_hub=false
Evaluation
lerobot-eval \
--policy.path=LeTau/act_aloha_transfer_cube \
--env.type=aloha \
--env.task=AlohaTransferCube-v0 \
--eval.batch_size=1 \
--eval.n_episodes=20
Fine-tuning
lerobot-train \
--resume=true \
--config_path=LeTau/act_aloha_transfer_cube/train_config.json \
--steps=100000
Results
| Evaluation | Episodes | Success Rate | Avg Sum Reward |
|---|---|---|---|
| Training | 50 | 42% | 116.26 |
| Independent | 20 | 35% | 95.95 |
Expected success rate: 35-42%
Detailed Evaluation Results (Training)
Sum Rewards: [0.0, 241.0, 57.0, 201.0, 48.0, 0.0, 0.0, 220.0, 262.0, 0.0,
59.0, 211.0, 287.0, 187.0, 74.0, 2.0, 203.0, 18.0, 10.0, 0.0,
0.0, 263.0, 7.0, 57.0, 39.0, 214.0, 297.0, 24.0, 0.0, 274.0,
201.0, 2.0, 228.0, 228.0, 68.0, 290.0, 2.0, 222.0, 31.0, 219.0,
69.0, 22.0, 0.0, 76.0, 244.0, 227.0, 0.0, 26.0, 192.0, 211.0]
Successes: 21/50 episodes
Limitations
- Limited training data: Only 50 demonstration episodes available
- Moderate success rate: This is a lightweight baseline model
- Single task: Only trained on TransferCube, no multi-task capability
Citation
@article{zhao2023learning,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
Acknowledgments
- Downloads last month
- 16