Diffusion Policy for ALOHA TransferCube Task (Baseline)
⚠️ Note: This model underperforms ACT on this task. Published for comparison purposes.
A Diffusion Policy model trained on the ALOHA simulation TransferCube task. This model is published as a baseline comparison to demonstrate that ACT significantly outperforms Diffusion Policy on ALOHA bimanual tasks.
Key Finding
| Model | Steps | Success Rate | Parameters |
|---|---|---|---|
| ACT | 60K | 42% | 52M |
| Diffusion Policy | 200K | 10% | ~100M |
Conclusion: ACT is the recommended approach for ALOHA tasks.
Model Description
| Property | Value |
|---|---|
| Architecture | Diffusion Policy |
| Parameters | ~100M |
| Task | ALOHA TransferCube-v0 |
| Training Steps | 200,000 |
| Batch Size | 32 |
| Success Rate | ~10% |
Training Data
- Dataset: lerobot/aloha_sim_transfer_cube_human_image
- Episodes: 50 human demonstrations
- Frames: 20,000
Task Description
The TransferCube task requires a bimanual robot to:
- Pick up a red cube with the right arm
- Transfer the cube to the left gripper
Demo Video
Training Environment
- GPU: RTX A6000
- Framework: LeRobot 0.4.3
- Training Time: Around 12 hours
Usage
Installation
pip install lerobot gym-aloha
Training
lerobot-train \
--policy.type=diffusion \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human_image \
--env.type=aloha \
--env.task=AlohaTransferCube-v0 \
--batch_size=32 \
--steps=200000 \
--eval.n_episodes=10 \
--eval_freq=20000 \
--save_freq=20000 \
--output_dir=./outputs/dp_aloha_transfer_cube \
--wandb.enable=false \
--policy.push_to_hub=false
Evaluation
lerobot-eval \
--policy.path=LeTau/diffusion_aloha_transfer_cube \
--env.type=aloha \
--env.task=AlohaTransferCube-v0 \
--eval.batch_size=1 \
--eval.n_episodes=20
Results
| Evaluation | Episodes | Success Rate | Avg Sum Reward |
|---|---|---|---|
| Training (100K) | 10 | 10% | 23.7 |
| Training (200K) | 10 | 10% | 23.3 |
| Independent | 20 | 10% | 28.3 |
Expected success rate: ~10%
Detailed Evaluation Results (Independent)
Sum Rewards: [0.0, 0.0, 253.0, 4.0, 0.0, 0.0, 0.0, 81.0, 21.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 207.0, 0.0, 0.0, 0.0, 0.0]
Successes: 2/20 episodes
Why Does Diffusion Policy Underperform?
- ACT is designed for ALOHA: ACT was specifically created for bimanual manipulation tasks
- Data efficiency: Diffusion Policy may need more demonstrations to learn effectively
- Task characteristics: TransferCube requires precise, deterministic actions rather than multi-modal action distributions
Recommendation
For ALOHA bimanual tasks, use ACT instead:
- LeTau/act_aloha_transfer_cube - 42% success rate
Citation
@article{zhao2023learning,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
@article{chi2023diffusion,
title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
author={Chi, Cheng and Feng, Siyuan and Du, Yilun and Xu, Zhenjia and Cousineau, Eric and Burchfiel, Benjamin and Song, Shuran},
journal={arXiv preprint arXiv:2303.04137},
year={2023}
}
Acknowledgments
- LeRobot framework by HuggingFace
- ALOHA project by Stanford
- Diffusion Policy project by Columbia
- Downloads last month
- 17