|
|
--- |
|
|
language: en |
|
|
license: mit |
|
|
library_name: transformers |
|
|
tags: |
|
|
- computer-vision |
|
|
- drowsiness-detection |
|
|
- driver-safety |
|
|
- cnn |
|
|
- tensorflow |
|
|
model_name: drowsiness_model.h5 |
|
|
datasets: |
|
|
- ckcl/drowsiness_dataset |
|
|
- custom |
|
|
metrics: |
|
|
- accuracy |
|
|
- binary-crossentropy |
|
|
widget: |
|
|
- text: Example input |
|
|
pipeline_tag: image-classification |
|
|
base_model: |
|
|
- google/mobilenet_v2_1.0_224 |
|
|
--- |
|
|
|
|
|
# Driver Drowsiness Detection Model |
|
|
|
|
|
This model is designed to detect driver drowsiness from facial images using a CNN architecture. |
|
|
|
|
|
## Model Details |
|
|
- Architecture: CNN |
|
|
- Input: Facial images (64x64x3) |
|
|
- Output: Binary classification (drowsy/not drowsy) |
|
|
|
|
|
## Usage |
|
|
```python |
|
|
import tensorflow as tf |
|
|
import cv2 |
|
|
import numpy as np |
|
|
|
|
|
# Load model |
|
|
model = tf.keras.models.load_model('drowsiness_model.h5') |
|
|
|
|
|
# Preprocess image |
|
|
img = cv2.imread('face.jpg') |
|
|
img = cv2.resize(img, (64, 64)) |
|
|
img = img / 255.0 |
|
|
img = np.expand_dims(img, axis=0) |
|
|
|
|
|
# Make prediction |
|
|
prediction = model.predict(img) |
|
|
is_drowsy = prediction[0][0] > 0.5 |
|
|
``` |
|
|
|
|
|
## Training Details |
|
|
- Dataset: Custom driver drowsiness dataset |
|
|
- Training method: Binary cross-entropy loss with Adam optimizer |
|
|
- Validation split: 20% |
|
|
- Early stopping with patience=3 |
|
|
|
|
|
## Model Architecture |
|
|
- Input Layer: 64x64x3 images |
|
|
- Convolutional Layers: |
|
|
- Conv2D(32, 3x3) + BatchNorm + ReLU |
|
|
- MaxPooling2D(2x2) |
|
|
- Conv2D(64, 3x3) + BatchNorm + ReLU |
|
|
- MaxPooling2D(2x2) |
|
|
- Conv2D(128, 3x3) + BatchNorm + ReLU |
|
|
- MaxPooling2D(2x2) |
|
|
- Dense Layers: |
|
|
- Dense(128) + BatchNorm + ReLU |
|
|
- Dropout(0.5) |
|
|
- Dense(1) + Sigmoid |
|
|
|
|
|
## Performance |
|
|
- Binary classification for drowsiness detection |
|
|
- Optimized for real-time inference |
|
|
- Suitable for embedded systems and edge devices |
|
|
|
|
|
## License |
|
|
This model is released under the MIT License. |