Spaces:
Paused
Paused
File size: 38,886 Bytes
32ef085 aff30bc 0c53c1b c9ad6ed 5ea9a7f c9ad6ed aff30bc ad78c1f a7d8613 9b81dbc cb81381 a071219 5ea9a7f 9b81dbc a071219 9b81dbc a071219 9b81dbc a071219 cb81381 a071219 9b81dbc ad78c1f 9b81dbc a071219 9b81dbc cb81381 9b81dbc 5ea9a7f a7d8613 cb81381 aff30bc ad78c1f aff30bc e22346a aff30bc 5ea9a7f e22346a aff30bc e22346a aff30bc e22346a aff30bc e22346a aff30bc e22346a 5ea9a7f 32ef085 b192e3f c9ad6ed e22346a c9ad6ed e22346a c9ad6ed e22346a c9ad6ed e22346a c9ad6ed aff30bc c9ad6ed aff30bc c9ad6ed aff30bc c9ad6ed aff30bc c9ad6ed 5ea9a7f aff30bc 5ea9a7f aff30bc 5ea9a7f c9ad6ed aff30bc c9ad6ed aff30bc c9ad6ed aff30bc c9ad6ed aff30bc 5ea9a7f f574169 0c53c1b 60d9cea 0c53c1b 60d9cea 0c53c1b 60d9cea 0c53c1b 60d9cea 0c53c1b 60d9cea 0c53c1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
###################################### version 4 NER change done #######################################################
import spaces
import gradio as gr
from PIL import Image
import numpy as np
import cv2
import re
def preprocess_image_for_ocr(image):
image_rgb = image.convert("RGB")
img_np = np.array(image_rgb)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
adaptive_threshold = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 85, 11,
)
preprocessed_pil = Image.fromarray(adaptive_threshold)
return preprocessed_pil
import re
def extract_medication_lines(text):
"""
Extracts medication lines robustly:
- Matches form as T./TAB./TAB/TABLET/TABLETS, C./CAP./CAP/CAPSULE/CAPSULES, etc.
- Floating/slash doses (e.g., 2.5MG, 10/20MG)
- Optional second form (prefix/suffix/mid)
- Any case
"""
# Comprehensive form pattern (optional . or plural S)
form = r"(T\.?|TAB\.?|TABLET(S)?|C\.?|CAP\.?|CAPSULE(S)?|SYRUP(S)?|SYP|DROP(S)?|INJ\.?|INJECTION(S)?|OINTMENT(S)?|CREAM(S)?|GEL(S)?|PATCH(ES)?|SOL\.?|SOLUTION(S)?|ORAL)"
name = r"([A-Z0-9\-/]+(?:\s+[A-Z0-9\-/]+){0,4})"
opt_form = fr"(?:\s+{form})?" # allow form at end as well
# Dose: decimal numbers, slash combos, unit, or blank
opt_dose = r"(?:\s*\d{1,4}(?:\.\d+)?(?:/\d{1,4}(?:\.\d+)?)?\s*(mg|ml|mcg|g|kg|units|iu|%|))?"
pattern = re.compile(
fr"\b{form}\s+{name}{opt_form}{opt_dose}\b",
re.IGNORECASE
)
lines = text.split('\n')
matches = set()
for line in lines:
line = line.strip()
for m in pattern.finditer(line):
out = m.group(0)
out = re.sub(r"\s+", " ", out).strip()
matches.add(out.upper())
return '\n'.join(matches)
def clinical_ner_extract(text, use_gpu=False):
"""
Uses ClinicalNER for medicine name, then finds form/dose in source sentence.
Returns clean combinations: form + entity + dose (no unwanted text).
"""
# Load models in GPU context if required
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_pipeline = pipeline(
"ner",
model=model,
tokenizer=tokenizer,
aggregation_strategy="simple",
device=0 if device=="cuda" else -1
)
text_lines = text.split('\n')
entities = ner_pipeline(text)
meds = []
for ent in entities:
if ent["entity_group"] == "treatment":
# For each detected medicine entity, scan lines for context
entity_name = ent["word"].lower()
for line in text_lines:
if entity_name in line.lower():
# Find form and dose
form_match = re.search(r"(TAB(L?ET)?|CAP(SULE)?|SYRUP|SYP|DROP(S)?|INJ(CTION)?|OINTMENT|CREAM|GEL|PATCH|SOL(UTION)?|ORAL)", line, re.IGNORECASE)
dose_match = re.search(r"(\d{1,4} ?(mg|ml|mcg|g|kg|units|IU)|\d{1,2} ?%( ?w\/w| ?w\/v| ?v\/v)?)", line, re.IGNORECASE)
tokens = []
if form_match:
tokens.append(form_match.group(0).upper())
tokens.append(ent["word"].upper())
if dose_match:
tokens.append(dose_match.group(0))
meds.append(" ".join(tokens).strip())
break
return '\n'.join(set(meds)) if meds else "None detected"
@spaces.GPU
def run_ocr_and_extract(image, temperature=0.2, extraction_mode="Regex"):
# Load OCR model ONLY in GPU context!
import torch
from transformers import LightOnOCRForConditionalGeneration, LightOnOCRProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
attn = "sdpa" if device == "cuda" else "eager"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
attn_implementation=attn,
torch_dtype=dtype,
trust_remote_code=True,
).to(device).eval()
processor = LightOnOCRProcessor.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
trust_remote_code=True,
)
processed_img = image
# processed_img = preprocess_image_for_ocr(image)
chat = [
{
"role": "user",
"content": [
{"type": "image", "image": processed_img}
],
}
]
inputs = processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
inputs = {
k: (v.to(device=device, dtype=dtype)
if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
else v.to(device)
if isinstance(v, torch.Tensor)
else v)
for k, v in inputs.items()
}
generation_kwargs = dict(
**inputs,
max_new_tokens=2048,
temperature=temperature if temperature > 0 else 0.0,
use_cache=True,
do_sample=temperature > 0,
)
with torch.no_grad():
outputs = ocr_model.generate(**generation_kwargs)
output_text = processor.decode(outputs[0], skip_special_tokens=True)
raw_text = output_text.strip()
# Clean medicines using selected extraction method
if extraction_mode == "Clinical NER":
meds = clinical_ner_extract(raw_text, use_gpu=(device=="cuda"))
else: # Regex
meds = extract_medication_lines(raw_text)
yield meds, raw_text, processed_img
def process_input(file_input, temperature, extraction_mode):
if file_input is None:
yield "Please upload an image/PDF.", "", None
return
image_to_process = Image.open(file_input)
for meds_out, raw_text, processed_img in run_ocr_and_extract(image_to_process, temperature, extraction_mode):
yield meds_out, raw_text, processed_img
with gr.Blocks(title="π Medicine Extraction", theme=gr.themes.Soft()) as demo:
file_input = gr.File(
label="Upload Image (or PDF first page for OCR)",
file_types=[".png", ".jpg", ".jpeg"], # PDF support: requires render as image first
type="filepath"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Temperature"
)
extraction_mode = gr.Radio(
choices=["Regex", "Clinical NER"],
value="Regex",
label="Extraction Method"
)
medicines_output = gr.Textbox(
label="π Cleaned Medicines",
lines=10,
interactive=False,
show_copy_button=True
)
raw_output = gr.Textbox(
label="Raw OCR Output",
lines=10,
interactive=False,
show_copy_button=True
)
rendered_image = gr.Image(
label="Processed Image (Thresholded for OCR)",
interactive=False
)
submit_btn = gr.Button("Extract Medicines", variant="primary")
submit_btn.click(
fn=process_input,
inputs=[file_input, temperature, extraction_mode],
outputs=[medicines_output, raw_output, rendered_image]
)
if __name__ == "__main__":
demo.launch()
##################################### version 3 NER modification to be done ############################################################
# import spaces
# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# import re
# import re
# def extract_medication_lines(text):
# """
# Extracts medication/drug lines from text using flexible regex.
# Supports tablet, capsule, syrup, drops, injection, ointment, cream, gel, patch, solution, etc.
# Matches dose like '1/2/10/250/500 mg/ml/mcg/g/kg' or concentration '1%/2%/0.2%/0.5%/10%' w/w, w/v, v/v.
# """
# form_pattern = r"(TAB(L?ET)?|CAP(SULE)?|SYRUP|SYP|DROP(S)?|INJ(CTION)?|OINTMENT|CREAM|GEL|PATCH|SOL(UTION)?|ORAL)"
# # Drug name: starts with a word (alphanumeric, maybe a hyphen), up to 4 words (spaces, hyphens or slash)
# name_pattern = r"([A-Z0-9\-/]+(?:\s+[A-Z0-9\-/]+){0,4})"
# # Dose: e.g., 250mg, 10ml, 0.5%, 10 mcg, 150mcg, etc. and concentration/w/w/w/v/etc.
# dose_pattern = r"(\d{1,4}\s*(mg|ml|mcg|g|kg|units|IU)|\d{1,2}\s*%(\s*w\/w|\s*w\/v|\s*v\/v)?)"
# # concentration can appear for creams/gels: e.g. "1% w/w", "2%"
# # Main pattern: will attempt to capture form anywhere, then name, then dose/concentration
# main_pattern = (
# r"(?:" + form_pattern + r"\s+)?" + # Form prefix optional
# name_pattern + r"\s*" +
# r"(?:" + form_pattern + r"\s*)?" + # Form mid/suffix optional
# r"(?:" + dose_pattern + r")" # Dose/concentration required
# )
# med_regex = re.compile(main_pattern, re.IGNORECASE)
# meds = []
# for line in text.split('\n'):
# line_stripped = line.strip()
# match = med_regex.search(line_stripped)
# if match:
# meds.append(line_stripped)
# return '\n'.join(meds)
# ########################### added NER modification to be done ###################################
# def get_medicine_context(entities, text_lines):
# """
# For each medicine entity detected by NER, find its form and dose context from its source line.
# Returns list of strings like 'TAB ALDACTONE 25MG'.
# """
# output = []
# for ent in entities:
# if ent["entity_group"] == "treatment":
# # Find line containing the entity's word (robust for multiline output)
# for line in text_lines:
# if ent["word"].lower() in line.lower():
# # Search line for context
# match = re.search(r"((TAB(L?ET)?|CAP(SULE)?|SYRUP|SYP|DROP(S)?|INJ(CTION)?|OINTMENT|CREAM|GEL|PATCH|SOL(UTION)?|ORAL).{0,40})", line, re.IGNORECASE)
# dose = re.search(r"\d{1,4}\s*(mg|ml|mcg|g|kg|units|IU)|\d{1,2}\s*%(\s*w\/w|\s*w\/v|\s*v\/v)?", line, re.IGNORECASE)
# info = []
# if match:
# info.append(match.group(0).strip())
# else:
# info.append(ent["word"].strip())
# if dose:
# info.append(dose.group(0).strip())
# output.append(" ".join(info))
# break
# return "\n".join(set(output)) if output else "None detected"
# ################################
# def preprocess_image_for_ocr(image):
# image_rgb = image.convert("RGB")
# img_np = np.array(image_rgb)
# gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
# adaptive_threshold = cv2.adaptiveThreshold(
# gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 85,35,
# )
# preprocessed_pil = Image.fromarray(adaptive_threshold)
# return preprocessed_pil
# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, use_ner=False):
# # Import and load within GPU context!
# import torch
# from transformers import (
# LightOnOCRForConditionalGeneration,
# LightOnOCRProcessor,
# AutoTokenizer, AutoModelForTokenClassification, pipeline,
# )
# device = "cuda" if torch.cuda.is_available() else "cpu"
# attn_implementation = "sdpa" if device == "cuda" else "eager"
# dtype = torch.bfloat16 if device == "cuda" else torch.float32
# ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# attn_implementation=attn_implementation,
# torch_dtype=dtype,
# trust_remote_code=True,
# ).to(device).eval()
# processor = LightOnOCRProcessor.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# trust_remote_code=True,
# )
# # NER only if requested
# if use_ner:
# ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_pipeline = pipeline(
# "ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple"
# )
# processed_img = preprocess_image_for_ocr(image)
# chat = [
# {
# "role": "user",
# "content": [
# {"type": "image", "image": processed_img}
# ],
# }
# ]
# inputs = processor.apply_chat_template(
# chat,
# add_generation_prompt=True,
# tokenize=True,
# return_dict=True,
# return_tensors="pt",
# )
# inputs = {
# k: (v.to(device=device, dtype=dtype)
# if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
# else v.to(device)
# if isinstance(v, torch.Tensor)
# else v)
# for k, v in inputs.items()
# }
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=2048,
# temperature=temperature if temperature > 0 else 0.0,
# use_cache=True,
# do_sample=temperature > 0,
# )
# with torch.no_grad():
# outputs = ocr_model.generate(**generation_kwargs)
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
# cleaned_text = output_text.strip()
# # Extract medicines
# if use_ner:
# entities = ner_pipeline(cleaned_text)
# meds = []
# for ent in entities:
# if ent["entity_group"] == "treatment":
# word = ent["word"]
# if word.startswith("##") and meds:
# meds[-1] += word[2:]
# else:
# meds.append(word)
# result_meds = ", ".join(set(meds)) if meds else "None detected"
# else:
# result_meds = extract_medication_lines(cleaned_text) or "None detected"
# yield result_meds, processed_img # Only medicines and processed image
# def process_input(file_input, temperature, page_num, extraction_mode):
# if file_input is None:
# yield "Please upload an image or PDF first.", None
# return
# image_to_process = Image.open(file_input) if not str(file_input).lower().endswith(".pdf") else None # simplify to image only
# use_ner = extraction_mode == "Clinical NER"
# for meds_out, processed_img in extract_text_from_image(image_to_process, temperature, use_ner):
# yield meds_out, processed_img
# with gr.Blocks(title="π Medicine Extraction", theme=gr.themes.Soft()) as demo:
# file_input = gr.File(
# label="πΌοΈ Upload Image",
# file_types=[".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature"
# )
# extraction_mode = gr.Radio(
# choices=["Clinical NER", "Regex"],
# value="Regex",
# label="Extraction Method",
# info="Clinical NER uses ML, Regex uses rules"
# )
# medicines_output = gr.Textbox(
# label="π Extracted Medicines/Drugs",
# placeholder="Medicine/drug names will appear here...",
# lines=2,
# max_lines=10,
# interactive=False,
# show_copy_button=True
# )
# rendered_image = gr.Image(
# label="Processed Image (Adaptive Thresholded for OCR)",
# interactive=False
# )
# submit_btn = gr.Button("Extract Medicines", variant="primary")
# page_slider = gr.Slider(minimum=1, maximum=20, value=1, step=1, label="Page Number")
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, page_slider, extraction_mode],
# outputs=[medicines_output, rendered_image]
# )
# if __name__ == "__main__":
# demo.launch()
#################################################### running code only NER #######################
#!/usr/bin/env python3
# import subprocess
# import sys
# import spaces
# import torch
# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# import pypdfium2 as pdfium
# from transformers import (
# LightOnOCRForConditionalGeneration,
# LightOnOCRProcessor,
# )
# from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
# device = "cuda" if torch.cuda.is_available() else "cpu"
# if device == "cuda":
# attn_implementation = "sdpa"
# dtype = torch.bfloat16
# else:
# attn_implementation = "eager"
# dtype = torch.float32
# ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# attn_implementation=attn_implementation,
# torch_dtype=dtype,
# trust_remote_code=True,
# ).to(device).eval()
# processor = LightOnOCRProcessor.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# trust_remote_code=True,
# )
# ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
# ner_pipeline = pipeline(
# "ner",
# model=ner_model,
# tokenizer=ner_tokenizer,
# aggregation_strategy="simple",
# )
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
# width, height = page.get_size()
# pixel_width = width * scale
# pixel_height = height * scale
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
# target_scale = scale * resize_factor
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
# def process_pdf(pdf_path, page_num=1):
# pdf = pdfium.PdfDocument(pdf_path)
# total_pages = len(pdf)
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
# page = pdf[page_idx]
# img = render_pdf_page(page)
# pdf.close()
# return img, total_pages, page_idx + 1
# def clean_output_text(text):
# markers_to_remove = ["system", "user", "assistant"]
# lines = text.split('\n')
# cleaned_lines = []
# for line in lines:
# stripped = line.strip()
# if stripped.lower() not in markers_to_remove:
# cleaned_lines.append(line)
# cleaned = '\n'.join(cleaned_lines).strip()
# if "assistant" in text.lower():
# parts = text.split("assistant", 1)
# if len(parts) > 1:
# cleaned = parts[1].strip()
# return cleaned
# def preprocess_image_for_ocr(image):
# """Convert PIL.Image to adaptive thresholded image for OCR."""
# image_rgb = image.convert("RGB")
# img_np = np.array(image_rgb)
# gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
# adaptive_threshold = cv2.adaptiveThreshold(
# gray,
# 255,
# cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
# cv2.THRESH_BINARY,
# 85,
# 35,
# )
# preprocessed_pil = Image.fromarray(adaptive_threshold)
# return preprocessed_pil
# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2):
# """OCR + clinical NER, with preprocessing."""
# processed_img = preprocess_image_for_ocr(image)
# chat = [
# {
# "role": "user",
# "content": [
# {"type": "image", "image": processed_img}
# ],
# }
# ]
# inputs = processor.apply_chat_template(
# chat,
# add_generation_prompt=True,
# tokenize=True,
# return_dict=True,
# return_tensors="pt",
# )
# # Move inputs to device
# inputs = {
# k: (
# v.to(device=device, dtype=dtype)
# if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
# else v.to(device)
# if isinstance(v, torch.Tensor)
# else v
# )
# for k, v in inputs.items()
# }
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=2048,
# temperature=temperature if temperature > 0 else 0.0,
# use_cache=True,
# do_sample=temperature > 0,
# )
# with torch.no_grad():
# outputs = ocr_model.generate(**generation_kwargs)
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
# cleaned_text = clean_output_text(output_text)
# entities = ner_pipeline(cleaned_text)
# medications = []
# for ent in entities:
# if ent["entity_group"] == "treatment":
# word = ent["word"]
# if word.startswith("##") and medications:
# medications[-1] += word[2:]
# else:
# medications.append(word)
# medications_str = ", ".join(set(medications)) if medications else "None detected"
# yield cleaned_text, medications_str, output_text, processed_img
# def process_input(file_input, temperature, page_num):
# if file_input is None:
# yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
# return
# image_to_process = None
# page_info = ""
# slider_value = page_num
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith(".pdf"):
# try:
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
# page_info = f"Processing page {actual_page} of {total_pages}"
# slider_value = actual_page
# except Exception as e:
# msg = f"Error processing PDF: {str(e)}"
# yield msg, "", msg, "", None, slider_value
# return
# else:
# try:
# image_to_process = Image.open(file_path)
# page_info = "Processing image"
# except Exception as e:
# msg = f"Error opening image: {str(e)}"
# yield msg, "", msg, "", None, slider_value
# return
# try:
# for cleaned_text, medications, raw_md, processed_img in extract_text_from_image(
# image_to_process, temperature
# ):
# yield cleaned_text, medications, raw_md, page_info, processed_img, slider_value
# except Exception as e:
# error_msg = f"Error during text extraction: {str(e)}"
# yield error_msg, "", error_msg, page_info, image_to_process, slider_value
# def update_slider(file_input):
# if file_input is None:
# return gr.update(maximum=20, value=1)
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith('.pdf'):
# try:
# pdf = pdfium.PdfDocument(file_path)
# total_pages = len(pdf)
# pdf.close()
# return gr.update(maximum=total_pages, value=1)
# except:
# return gr.update(maximum=20, value=1)
# else:
# return gr.update(maximum=1, value=1)
# with gr.Blocks(title="π Medicine Extraction", theme=gr.themes.Soft()) as demo:
# file_input = gr.File(
# label="πΌοΈ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature"
# )
# page_slider = gr.Slider(
# minimum=1, maximum=20, value=1, step=1,
# label="Page Number (PDF only)",
# interactive=True
# )
# output_text = gr.Textbox(
# label="π Extracted Text",
# lines=4,
# max_lines=10,
# interactive=False,
# show_copy_button=True
# )
# medicines_output = gr.Textbox(
# label="π Extracted Medicines/Drugs",
# placeholder="Medicine/drug names will appear here...",
# lines=2,
# max_lines=5,
# interactive=False,
# show_copy_button=True
# )
# raw_output = gr.Textbox(
# label="Raw Model Output",
# lines=2,
# max_lines=5,
# interactive=False
# )
# page_info = gr.Markdown(
# value="" # Info of PDF page
# )
# rendered_image = gr.Image(
# label="Processed Image (Thresholded for OCR)",
# interactive=False
# )
# num_pages = gr.Number(
# value=1, label="Current Page (slider)", visible=False
# )
# submit_btn = gr.Button("Extract Medicines", variant="primary")
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, page_slider],
# outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
# )
# file_input.change(
# fn=update_slider,
# inputs=[file_input],
# outputs=[page_slider]
# )
# if __name__ == "__main__":
# demo.launch()
########################################## #############################################################
# Create Gradio interface
# with gr.Blocks(title="π Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
# gr.Markdown(f"""
# # π Image/PDF to Text Extraction with LightOnOCR
# **π‘ How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract (1-20)
# 3. Adjust temperature if needed
# 4. Click "Extract Text"
# **Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!
# **Model:** LightOnOCR-1B-1025 by LightOn AI
# **Device:** {device.upper()}
# **Attention:** {attn_implementation}
# """)
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="πΌοΈ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# rendered_image = gr.Image(
# label="π Preview",
# type="pil",
# height=400,
# interactive=False
# )
# num_pages = gr.Slider(
# minimum=1,
# maximum=20,
# value=1,
# step=1,
# label="PDF: Page Number",
# info="Select which page to extract"
# )
# page_info = gr.Textbox(
# label="Processing Info",
# value="",
# interactive=False
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature",
# info="0.0 = deterministic, Higher = more varied"
# )
# submit_btn = gr.Button("Extract Text", variant="primary")
# clear_btn = gr.Button("Clear", variant="secondary")
# with gr.Column(scale=2):
# output_text = gr.Markdown(
# label="π Extracted Text (Rendered)",
# value="*Extracted text will appear here...*"
# )
# medications_output = gr.Textbox(
# label="π Extracted Medicines/Drugs",
# placeholder="Medicine/drug names will appear here...",
# lines=2,
# max_lines=5,
# interactive=False,
# show_copy_button=True
# )
# with gr.Row():
# with gr.Column():
# raw_output = gr.Textbox(
# label="Raw Markdown Output",
# placeholder="Raw text will appear here...",
# lines=20,
# max_lines=30,
# show_copy_button=True
# )
# # Event handlers
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, num_pages, ],
# outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
# )
#################################### old code to be checked #############################################
# import sys
# import threading
# import spaces
# import torch
# import gradio as gr
# from PIL import Image
# from io import BytesIO
# import pypdfium2 as pdfium
# from transformers import (
# LightOnOCRForConditionalGeneration,
# LightOnOCRProcessor,
# TextIteratorStreamer,
# )
# # ---- CLINICAL NER IMPORTS ----
# import spacy
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Choose best attention implementation based on device
# if device == "cuda":
# attn_implementation = "sdpa"
# dtype = torch.bfloat16
# print("Using sdpa for GPU")
# else:
# attn_implementation = "eager" # Best for CPU
# dtype = torch.float32
# print("Using eager attention for CPU")
# # Initialize the LightOnOCR model and processor
# print(f"Loading model on {device} with {attn_implementation} attention...")
# model = LightOnOCRForConditionalGeneration.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# attn_implementation=attn_implementation,
# torch_dtype=dtype,
# trust_remote_code=True
# ).to(device).eval()
# processor = LightOnOCRProcessor.from_pretrained(
# "lightonai/LightOnOCR-1B-1025",
# trust_remote_code=True
# )
# print("Model loaded successfully!")
# # ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
# print("Loading clinical NER model (bc5cdr)...")
# nlp_ner = spacy.load("en_ner_bc5cdr_md")
# print("Clinical NER loaded.")
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
# """Render a PDF page to PIL Image."""
# width, height = page.get_size()
# pixel_width = width * scale
# pixel_height = height * scale
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
# target_scale = scale * resize_factor
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
# def process_pdf(pdf_path, page_num=1):
# """Extract a specific page from PDF."""
# pdf = pdfium.PdfDocument(pdf_path)
# total_pages = len(pdf)
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
# page = pdf[page_idx]
# img = render_pdf_page(page)
# pdf.close()
# return img, total_pages, page_idx + 1
# def clean_output_text(text):
# """Remove chat template artifacts from output."""
# markers_to_remove = ["system", "user", "assistant"]
# lines = text.split('\n')
# cleaned_lines = []
# for line in lines:
# stripped = line.strip()
# # Skip lines that are just template markers
# if stripped.lower() not in markers_to_remove:
# cleaned_lines.append(line)
# cleaned = '\n'.join(cleaned_lines).strip()
# if "assistant" in text.lower():
# parts = text.split("assistant", 1)
# if len(parts) > 1:
# cleaned = parts[1].strip()
# return cleaned
# def extract_medication_names(text):
# """Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
# doc = nlp_ner(text)
# meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
# meds_unique = list(dict.fromkeys(meds))
# return meds_unique
# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, stream=False):
# """Extract text from image using LightOnOCR model."""
# chat = [
# {
# "role": "user",
# "content": [
# {"type": "image", "url": image},
# ],
# }
# ]
# inputs = processor.apply_chat_template(
# chat,
# add_generation_prompt=True,
# tokenize=True,
# return_dict=True,
# return_tensors="pt"
# )
# inputs = {
# k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
# else v.to(device) if isinstance(v, torch.Tensor)
# else v
# for k, v in inputs.items()
# }
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=2048,
# temperature=temperature if temperature > 0 else 0.0,
# use_cache=True,
# do_sample=temperature > 0,
# )
# if stream:
# # Streaming generation
# streamer = TextIteratorStreamer(
# processor.tokenizer,
# skip_prompt=True,
# skip_special_tokens=True
# )
# generation_kwargs["streamer"] = streamer
# thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# full_text = ""
# for new_text in streamer:
# full_text += new_text
# cleaned_text = clean_output_text(full_text)
# yield cleaned_text
# thread.join()
# else:
# # Non-streaming generation
# with torch.no_grad():
# outputs = model.generate(**generation_kwargs)
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
# cleaned_text = clean_output_text(output_text)
# yield cleaned_text
# def process_input(file_input, temperature, page_num, enable_streaming):
# """Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
# if file_input is None:
# yield "Please upload an image or PDF first.", "", "", None, gr.update()
# return
# image_to_process = None
# page_info = ""
# file_path = file_input if isinstance(file_input, str) else file_input.name
# # Handle PDF files
# if file_path.lower().endswith('.pdf'):
# try:
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
# page_info = f"Processing page {actual_page} of {total_pages}"
# except Exception as e:
# yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
# return
# # Handle image files
# else:
# try:
# image_to_process = Image.open(file_path)
# page_info = "Processing image"
# except Exception as e:
# yield f"Error opening image: {str(e)}", "", "", None, gr.update()
# return
# try:
# for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
# meds = extract_medication_names(extracted_text)
# meds_str = "\n".join(meds) if meds else "No medications found."
# yield meds_str, meds_str, page_info, image_to_process, gr.update()
# except Exception as e:
# error_msg = f"Error during text extraction: {str(e)}"
# yield error_msg, error_msg, page_info, image_to_process, gr.update()
# def update_slider(file_input):
# """Update page slider based on PDF page count."""
# if file_input is None:
# return gr.update(maximum=20, value=1)
# file_path = file_input if isinstance(file_input, str) else file_input.name
# if file_path.lower().endswith('.pdf'):
# try:
# pdf = pdfium.PdfDocument(file_path)
# total_pages = len(pdf)
# pdf.close()
# return gr.update(maximum=total_pages, value=1)
# except:
# return gr.update(maximum=20, value=1)
# else:
# return gr.update(maximum=1, value=1)
# # ----- GRADIO UI -----
# with gr.Blocks(title="π Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
# gr.Markdown(f"""
# # π Medication Extraction from Image/PDF with LightOnOCR + Clinical NER
# **π‘ How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract
# 3. Adjust temperature if needed
# 4. Click "Extract Medications"
# **Output:** Only medication names found in text (via NER)
# **Model:** LightOnOCR-1B-1025 by LightOn AI
# **Device:** {device.upper()}
# **Attention:** {attn_implementation}
# """)
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="πΌοΈ Upload Image or PDF",
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
# type="filepath"
# )
# rendered_image = gr.Image(
# label="π Preview",
# type="pil",
# height=400,
# interactive=False
# )
# num_pages = gr.Slider(
# minimum=1,
# maximum=20,
# value=1,
# step=1,
# label="PDF: Page Number",
# info="Select which page to extract"
# )
# page_info = gr.Textbox(
# label="Processing Info",
# value="",
# interactive=False
# )
# temperature = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.2,
# step=0.05,
# label="Temperature",
# info="0.0 = deterministic, Higher = more varied"
# )
# enable_streaming = gr.Checkbox(
# label="Enable Streaming",
# value=True,
# info="Show text progressively as it's generated"
# )
# submit_btn = gr.Button("Extract Medications", variant="primary")
# clear_btn = gr.Button("Clear", variant="secondary")
# with gr.Column(scale=2):
# output_text = gr.Markdown(
# label="π©Ί Extracted Medication Names",
# value="*Medication names will appear here...*"
# )
# with gr.Row():
# with gr.Column():
# raw_output = gr.Textbox(
# label="Extracted Medication Names (Raw)",
# placeholder="Medication list will appear here...",
# lines=20,
# max_lines=30,
# show_copy_button=True
# )
# # Event handlers
# submit_btn.click(
# fn=process_input,
# inputs=[file_input, temperature, num_pages, enable_streaming],
# outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
# )
# file_input.change(
# fn=update_slider,
# inputs=[file_input],
# outputs=[num_pages]
# )
# clear_btn.click(
# fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
# outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
# )
# if __name__ == "__main__":
# demo.launch()
|