Spaces:
Paused
Paused
A newer version of the Gradio SDK is available:
6.1.0
InstantSplat API Guide
This guide shows you how to use the InstantSplat API to submit images and get back the Supabase GLB URL.
Quick Start
1. Using Python (Recommended)
Install the Gradio client:
pip install gradio_client
Simple Example - Get GLB URL
from gradio_client import Client
# Connect to your Space
client = Client("your-username/InstantSplat") # or full URL
# Submit images
result = client.predict(
[
"path/to/image1.jpg",
"path/to/image2.jpg",
"path/to/image3.jpg"
],
api_name="/predict" # Uses the main process function
)
# Extract URLs
video_path, ply_url, download_path, model_ply, model_glb, glb_url = result
print(f"GLB URL: {glb_url}")
print(f"PLY URL: {ply_url}")
Complete Example with Error Handling
from gradio_client import Client
import os
def process_images_to_glb(image_paths, space_url="your-username/InstantSplat"):
"""
Process images through InstantSplat and get GLB URL.
Args:
image_paths: List of local image file paths (3+ images recommended)
space_url: HuggingFace Space URL or identifier
Returns:
dict with URLs and status
"""
try:
# Validate inputs
if len(image_paths) < 2:
return {"error": "Need at least 2 images"}
for path in image_paths:
if not os.path.exists(path):
return {"error": f"Image not found: {path}"}
# Connect and process
client = Client(space_url)
print(f"Submitting {len(image_paths)} images for processing...")
result = client.predict(
image_paths,
api_name="/predict"
)
# Unpack results
video_path, ply_url, _, _, glb_path, glb_url = result
# Check success
if glb_url and not glb_url.startswith("Error"):
return {
"status": "success",
"glb_url": glb_url,
"ply_url": ply_url,
"video_available": video_path is not None
}
else:
return {
"status": "error",
"error": glb_url or "Upload failed"
}
except Exception as e:
return {
"status": "error",
"error": str(e)
}
# Usage
if __name__ == "__main__":
images = [
"image1.jpg",
"image2.jpg",
"image3.jpg"
]
result = process_images_to_glb(images)
if result["status"] == "success":
print(f"✅ Success!")
print(f"GLB URL: {result['glb_url']}")
print(f"PLY URL: {result['ply_url']}")
else:
print(f"❌ Error: {result['error']}")
2. Using JavaScript/TypeScript
Install the Gradio client:
npm install --save @gradio/client
Example Code
import { Client } from "@gradio/client";
async function processImages(imagePaths: string[]): Promise<string> {
const client = await Client.connect("your-username/InstantSplat");
const result = await client.predict("/predict", {
inputfiles: imagePaths
});
// result.data is an array: [video, ply_url, download, model_ply, model_glb, glb_url]
const glbUrl = result.data[5];
return glbUrl;
}
// Usage
const images = [
"./image1.jpg",
"./image2.jpg",
"./image3.jpg"
];
processImages(images)
.then(glbUrl => console.log("GLB URL:", glbUrl))
.catch(err => console.error("Error:", err));
3. Using cURL (Direct HTTP)
First, get your Space's API endpoint:
# Get API info
curl https://your-username-instantsplat.hf.space/info
Then upload files and call the API:
# Upload files and call prediction
curl -X POST https://your-username-instantsplat.hf.space/api/predict \
-H "Content-Type: application/json" \
-d '{
"data": [
[
{"path": "https://url-to-image1.jpg"},
{"path": "https://url-to-image2.jpg"},
{"path": "https://url-to-image3.jpg"}
]
]
}'
Note: For cURL, you'll need to either:
- Provide URLs to publicly accessible images
- Or use Gradio's file upload API first to upload local files
API Response Format
The API returns a tuple with 6 elements:
[
video_path, # (0) Path to generated video file
ply_url, # (1) Supabase URL to PLY file
ply_download, # (2) Local PLY file for download
ply_model, # (3) PLY file for 3D viewer
glb_model, # (4) Local GLB file for 3D viewer
glb_url # (5) Supabase URL to GLB file ← THIS IS WHAT YOU WANT
]
Access the GLB URL:
- Python:
result[5]or unpack as shown above - JavaScript:
result.data[5]
Requirements
Input Requirements
- Minimum images: 2 (though 3+ recommended for better results)
- Image resolution: All images should have the same resolution
- Supported formats: JPG, PNG
- Recommended: 3-10 images of the same scene from different viewpoints
Processing Time
- 3 images: ~30-60 seconds (with GPU)
- 5+ images: ~60-120 seconds
- Depends on image resolution and GPU availability
Output Files
- GLB file: Typically 5-20 MB
- PLY file: Typically 50-200 MB
- Both files are uploaded to your Supabase Storage bucket
Error Handling
Common errors and solutions:
"Supabase credentials not set"
# Solution: Set environment variables on your Space
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=your-key
SUPABASE_BUCKET=outputs
"Payload too large"
# Solution: Increase Supabase bucket file size limit
# Dashboard > Storage > Settings > File size limit
"The number of input images should be greater than 1"
# Solution: Provide at least 2 images
images = ["img1.jpg", "img2.jpg", "img3.jpg"]
"The resolution of the input image should be the same"
# Solution: Resize images to same resolution before uploading
from PIL import Image
def resize_images(image_paths, size=(512, 512)):
for path in image_paths:
img = Image.open(path)
img = img.resize(size)
img.save(path)
Advanced Usage
Batch Processing Multiple Sets
from gradio_client import Client
import time
def batch_process(image_sets, space_url="your-username/InstantSplat"):
"""
Process multiple sets of images.
Args:
image_sets: List of image path lists
e.g., [["set1_img1.jpg", "set1_img2.jpg"], ["set2_img1.jpg", ...]]
"""
client = Client(space_url)
results = []
for i, images in enumerate(image_sets):
print(f"Processing set {i+1}/{len(image_sets)}...")
try:
result = client.predict(images, api_name="/predict")
glb_url = result[5]
results.append({
"set_index": i,
"status": "success",
"glb_url": glb_url,
"image_count": len(images)
})
except Exception as e:
results.append({
"set_index": i,
"status": "error",
"error": str(e)
})
# Rate limiting - be nice to the server
time.sleep(2)
return results
# Usage
image_sets = [
["scene1_img1.jpg", "scene1_img2.jpg", "scene1_img3.jpg"],
["scene2_img1.jpg", "scene2_img2.jpg", "scene2_img3.jpg"],
]
results = batch_process(image_sets)
for r in results:
if r["status"] == "success":
print(f"Set {r['set_index']}: {r['glb_url']}")
else:
print(f"Set {r['set_index']} failed: {r['error']}")
Async Processing (JavaScript)
import { Client } from "@gradio/client";
async function processMultipleSets(imageSets: string[][]) {
const client = await Client.connect("your-username/InstantSplat");
// Process all sets in parallel
const promises = imageSets.map(images =>
client.predict("/predict", { inputfiles: images })
.then(result => ({
status: "success",
glb_url: result.data[5]
}))
.catch(error => ({
status: "error",
error: error.message
}))
);
return await Promise.all(promises);
}
// Usage
const imageSets = [
["set1_img1.jpg", "set1_img2.jpg"],
["set2_img1.jpg", "set2_img2.jpg"],
];
processMultipleSets(imageSets)
.then(results => {
results.forEach((r, i) => {
if (r.status === "success") {
console.log(`Set ${i}: ${r.glb_url}`);
} else {
console.error(`Set ${i} failed: ${r.error}`);
}
});
});
API Endpoint Reference
GET /info
Returns API information and available endpoints.
GET /docs
Swagger/OpenAPI documentation (when show_api=True).
POST /api/predict
Main prediction endpoint.
Request:
{
"data": [
[
{"path": "file1.jpg"},
{"path": "file2.jpg"},
{"path": "file3.jpg"}
]
]
}
Response:
{
"data": [
"video_path.mp4",
"https://supabase.co/.../file.ply",
"download_path.ply",
"model_path.ply",
"model_path.glb",
"https://supabase.co/.../file.glb"
],
"duration": 45.2
}
Monitoring and Logs
View real-time logs in your HuggingFace Space:
- Go to your Space page
- Click "Logs" tab
- Watch processing in real-time
Rate Limits
- HuggingFace Spaces may have rate limits based on your tier
- Free tier: May queue requests during high load
- Pro tier: Better availability and no queuing
Support
For issues or questions:
- Check the logs in your Space
- Review error messages in API responses
- Ensure all environment variables are set
- Verify Supabase bucket configuration
Example: Complete Workflow
#!/usr/bin/env python3
"""
Complete workflow: Upload images → Process → Get GLB → Download
"""
from gradio_client import Client
import requests
import os
def complete_workflow(image_paths, output_dir="./outputs"):
"""Process images and download the resulting GLB file."""
# 1. Process images
print("🚀 Processing images...")
client = Client("your-username/InstantSplat")
result = client.predict(image_paths, api_name="/predict")
# 2. Extract URLs
glb_url = result[5]
ply_url = result[1]
if not glb_url or glb_url.startswith("Error"):
print(f"❌ Processing failed: {glb_url}")
return None
print(f"✅ Processing complete!")
print(f" GLB URL: {glb_url}")
print(f" PLY URL: {ply_url}")
# 3. Download GLB file
os.makedirs(output_dir, exist_ok=True)
glb_filename = os.path.join(output_dir, "model.glb")
print(f"📥 Downloading GLB to {glb_filename}...")
response = requests.get(glb_url)
if response.status_code == 200:
with open(glb_filename, 'wb') as f:
f.write(response.content)
print(f"✅ Downloaded: {glb_filename}")
return {
"glb_url": glb_url,
"ply_url": ply_url,
"local_glb": glb_filename
}
else:
print(f"❌ Download failed: {response.status_code}")
return None
if __name__ == "__main__":
images = ["img1.jpg", "img2.jpg", "img3.jpg"]
result = complete_workflow(images)
if result:
print(f"\n🎉 Success! Model saved to: {result['local_glb']}")
Next Steps
- Test with the Python example above
- Integrate into your application
- Set up error handling and retries
- Monitor your Supabase storage usage
- Consider batch processing for multiple scenes
Happy splating! 🎨✨