InstantSplat / API_GUIDE.md
Long Hoang
add api capability
803c132

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

InstantSplat API Guide

This guide shows you how to use the InstantSplat API to submit images and get back the Supabase GLB URL.

Quick Start

1. Using Python (Recommended)

Install the Gradio client:

pip install gradio_client

Simple Example - Get GLB URL

from gradio_client import Client

# Connect to your Space
client = Client("your-username/InstantSplat")  # or full URL

# Submit images
result = client.predict(
    [
        "path/to/image1.jpg",
        "path/to/image2.jpg",
        "path/to/image3.jpg"
    ],
    api_name="/predict"  # Uses the main process function
)

# Extract URLs
video_path, ply_url, download_path, model_ply, model_glb, glb_url = result

print(f"GLB URL: {glb_url}")
print(f"PLY URL: {ply_url}")

Complete Example with Error Handling

from gradio_client import Client
import os

def process_images_to_glb(image_paths, space_url="your-username/InstantSplat"):
    """
    Process images through InstantSplat and get GLB URL.
    
    Args:
        image_paths: List of local image file paths (3+ images recommended)
        space_url: HuggingFace Space URL or identifier
        
    Returns:
        dict with URLs and status
    """
    try:
        # Validate inputs
        if len(image_paths) < 2:
            return {"error": "Need at least 2 images"}
        
        for path in image_paths:
            if not os.path.exists(path):
                return {"error": f"Image not found: {path}"}
        
        # Connect and process
        client = Client(space_url)
        print(f"Submitting {len(image_paths)} images for processing...")
        
        result = client.predict(
            image_paths,
            api_name="/predict"
        )
        
        # Unpack results
        video_path, ply_url, _, _, glb_path, glb_url = result
        
        # Check success
        if glb_url and not glb_url.startswith("Error"):
            return {
                "status": "success",
                "glb_url": glb_url,
                "ply_url": ply_url,
                "video_available": video_path is not None
            }
        else:
            return {
                "status": "error",
                "error": glb_url or "Upload failed"
            }
            
    except Exception as e:
        return {
            "status": "error",
            "error": str(e)
        }


# Usage
if __name__ == "__main__":
    images = [
        "image1.jpg",
        "image2.jpg",
        "image3.jpg"
    ]
    
    result = process_images_to_glb(images)
    
    if result["status"] == "success":
        print(f"✅ Success!")
        print(f"GLB URL: {result['glb_url']}")
        print(f"PLY URL: {result['ply_url']}")
    else:
        print(f"❌ Error: {result['error']}")

2. Using JavaScript/TypeScript

Install the Gradio client:

npm install --save @gradio/client

Example Code

import { Client } from "@gradio/client";

async function processImages(imagePaths: string[]): Promise<string> {
  const client = await Client.connect("your-username/InstantSplat");
  
  const result = await client.predict("/predict", {
    inputfiles: imagePaths
  });
  
  // result.data is an array: [video, ply_url, download, model_ply, model_glb, glb_url]
  const glbUrl = result.data[5];
  
  return glbUrl;
}

// Usage
const images = [
  "./image1.jpg",
  "./image2.jpg", 
  "./image3.jpg"
];

processImages(images)
  .then(glbUrl => console.log("GLB URL:", glbUrl))
  .catch(err => console.error("Error:", err));

3. Using cURL (Direct HTTP)

First, get your Space's API endpoint:

# Get API info
curl https://your-username-instantsplat.hf.space/info

Then upload files and call the API:

# Upload files and call prediction
curl -X POST https://your-username-instantsplat.hf.space/api/predict \
  -H "Content-Type: application/json" \
  -d '{
    "data": [
      [
        {"path": "https://url-to-image1.jpg"},
        {"path": "https://url-to-image2.jpg"},
        {"path": "https://url-to-image3.jpg"}
      ]
    ]
  }'

Note: For cURL, you'll need to either:

  1. Provide URLs to publicly accessible images
  2. Or use Gradio's file upload API first to upload local files

API Response Format

The API returns a tuple with 6 elements:

[
    video_path,      # (0) Path to generated video file
    ply_url,         # (1) Supabase URL to PLY file
    ply_download,    # (2) Local PLY file for download
    ply_model,       # (3) PLY file for 3D viewer
    glb_model,       # (4) Local GLB file for 3D viewer
    glb_url          # (5) Supabase URL to GLB file ← THIS IS WHAT YOU WANT
]

Access the GLB URL:

  • Python: result[5] or unpack as shown above
  • JavaScript: result.data[5]

Requirements

Input Requirements

  • Minimum images: 2 (though 3+ recommended for better results)
  • Image resolution: All images should have the same resolution
  • Supported formats: JPG, PNG
  • Recommended: 3-10 images of the same scene from different viewpoints

Processing Time

  • 3 images: ~30-60 seconds (with GPU)
  • 5+ images: ~60-120 seconds
  • Depends on image resolution and GPU availability

Output Files

  • GLB file: Typically 5-20 MB
  • PLY file: Typically 50-200 MB
  • Both files are uploaded to your Supabase Storage bucket

Error Handling

Common errors and solutions:

"Supabase credentials not set"

# Solution: Set environment variables on your Space
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=your-key
SUPABASE_BUCKET=outputs

"Payload too large"

# Solution: Increase Supabase bucket file size limit
# Dashboard > Storage > Settings > File size limit

"The number of input images should be greater than 1"

# Solution: Provide at least 2 images
images = ["img1.jpg", "img2.jpg", "img3.jpg"]

"The resolution of the input image should be the same"

# Solution: Resize images to same resolution before uploading
from PIL import Image

def resize_images(image_paths, size=(512, 512)):
    for path in image_paths:
        img = Image.open(path)
        img = img.resize(size)
        img.save(path)

Advanced Usage

Batch Processing Multiple Sets

from gradio_client import Client
import time

def batch_process(image_sets, space_url="your-username/InstantSplat"):
    """
    Process multiple sets of images.
    
    Args:
        image_sets: List of image path lists
            e.g., [["set1_img1.jpg", "set1_img2.jpg"], ["set2_img1.jpg", ...]]
    """
    client = Client(space_url)
    results = []
    
    for i, images in enumerate(image_sets):
        print(f"Processing set {i+1}/{len(image_sets)}...")
        
        try:
            result = client.predict(images, api_name="/predict")
            glb_url = result[5]
            
            results.append({
                "set_index": i,
                "status": "success",
                "glb_url": glb_url,
                "image_count": len(images)
            })
            
        except Exception as e:
            results.append({
                "set_index": i,
                "status": "error",
                "error": str(e)
            })
        
        # Rate limiting - be nice to the server
        time.sleep(2)
    
    return results


# Usage
image_sets = [
    ["scene1_img1.jpg", "scene1_img2.jpg", "scene1_img3.jpg"],
    ["scene2_img1.jpg", "scene2_img2.jpg", "scene2_img3.jpg"],
]

results = batch_process(image_sets)

for r in results:
    if r["status"] == "success":
        print(f"Set {r['set_index']}: {r['glb_url']}")
    else:
        print(f"Set {r['set_index']} failed: {r['error']}")

Async Processing (JavaScript)

import { Client } from "@gradio/client";

async function processMultipleSets(imageSets: string[][]) {
  const client = await Client.connect("your-username/InstantSplat");
  
  // Process all sets in parallel
  const promises = imageSets.map(images => 
    client.predict("/predict", { inputfiles: images })
      .then(result => ({
        status: "success",
        glb_url: result.data[5]
      }))
      .catch(error => ({
        status: "error",
        error: error.message
      }))
  );
  
  return await Promise.all(promises);
}

// Usage
const imageSets = [
  ["set1_img1.jpg", "set1_img2.jpg"],
  ["set2_img1.jpg", "set2_img2.jpg"],
];

processMultipleSets(imageSets)
  .then(results => {
    results.forEach((r, i) => {
      if (r.status === "success") {
        console.log(`Set ${i}: ${r.glb_url}`);
      } else {
        console.error(`Set ${i} failed: ${r.error}`);
      }
    });
  });

API Endpoint Reference

GET /info

Returns API information and available endpoints.

GET /docs

Swagger/OpenAPI documentation (when show_api=True).

POST /api/predict

Main prediction endpoint.

Request:

{
  "data": [
    [
      {"path": "file1.jpg"},
      {"path": "file2.jpg"},
      {"path": "file3.jpg"}
    ]
  ]
}

Response:

{
  "data": [
    "video_path.mp4",
    "https://supabase.co/.../file.ply",
    "download_path.ply",
    "model_path.ply",
    "model_path.glb",
    "https://supabase.co/.../file.glb"
  ],
  "duration": 45.2
}

Monitoring and Logs

View real-time logs in your HuggingFace Space:

  1. Go to your Space page
  2. Click "Logs" tab
  3. Watch processing in real-time

Rate Limits

  • HuggingFace Spaces may have rate limits based on your tier
  • Free tier: May queue requests during high load
  • Pro tier: Better availability and no queuing

Support

For issues or questions:

  • Check the logs in your Space
  • Review error messages in API responses
  • Ensure all environment variables are set
  • Verify Supabase bucket configuration

Example: Complete Workflow

#!/usr/bin/env python3
"""
Complete workflow: Upload images → Process → Get GLB → Download
"""

from gradio_client import Client
import requests
import os

def complete_workflow(image_paths, output_dir="./outputs"):
    """Process images and download the resulting GLB file."""
    
    # 1. Process images
    print("🚀 Processing images...")
    client = Client("your-username/InstantSplat")
    result = client.predict(image_paths, api_name="/predict")
    
    # 2. Extract URLs
    glb_url = result[5]
    ply_url = result[1]
    
    if not glb_url or glb_url.startswith("Error"):
        print(f"❌ Processing failed: {glb_url}")
        return None
    
    print(f"✅ Processing complete!")
    print(f"   GLB URL: {glb_url}")
    print(f"   PLY URL: {ply_url}")
    
    # 3. Download GLB file
    os.makedirs(output_dir, exist_ok=True)
    glb_filename = os.path.join(output_dir, "model.glb")
    
    print(f"📥 Downloading GLB to {glb_filename}...")
    response = requests.get(glb_url)
    
    if response.status_code == 200:
        with open(glb_filename, 'wb') as f:
            f.write(response.content)
        print(f"✅ Downloaded: {glb_filename}")
        return {
            "glb_url": glb_url,
            "ply_url": ply_url,
            "local_glb": glb_filename
        }
    else:
        print(f"❌ Download failed: {response.status_code}")
        return None


if __name__ == "__main__":
    images = ["img1.jpg", "img2.jpg", "img3.jpg"]
    result = complete_workflow(images)
    
    if result:
        print(f"\n🎉 Success! Model saved to: {result['local_glb']}")

Next Steps

  1. Test with the Python example above
  2. Integrate into your application
  3. Set up error handling and retries
  4. Monitor your Supabase storage usage
  5. Consider batch processing for multiple scenes

Happy splating! 🎨✨