Spaces:
Running
Running
File size: 10,189 Bytes
1641ca7 762dded 2f4967b 1641ca7 2f4967b 6acd5d2 2f4967b 1641ca7 b6b04c7 2f4967b 6acd5d2 89f676e 6acd5d2 89f676e 2f4967b 30cf47b 2e553d1 72b5d84 762dded 6dce45a 762dded 8a11400 6dce45a 61a6c42 6dce45a 2f4967b 762dded 61a6c42 2f4967b 762dded 892da5a 762dded 892da5a 2f4967b 892da5a 61a6c42 892da5a 61a6c42 892da5a 762dded 2f4967b 6acd5d2 2f4967b 9e4540a 9e4b885 23cd5e3 2f4967b 6acd5d2 23cd5e3 2f4967b 23cd5e3 2f4967b 61a6c42 892da5a 2f4967b 892da5a 2f4967b 892da5a 2f4967b 61a6c42 2f4967b 61a6c42 2f4967b 61a6c42 2f4967b 61a6c42 2f4967b 892da5a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b f46813a 2f4967b 762dded c96f08a 61a6c42 23cd5e3 6c11a17 61a6c42 2f4967b c96f08a 762dded c96f08a 0430419 2f4967b 0430419 762dded 2f4967b eacf3db 9e4540a 2f4967b 0430419 2f4967b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import torch
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import gradio as gr
import re
from rank_bm25 import BM25Okapi
import numpy as np
# Load models
model = SentenceTransformer("distilbert-base-multilingual-cased")
modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
# Load data
df = pd.read_csv("cleaned1.csv")
df2 = pd.read_csv("cleaned2.csv")
df3 = pd.read_csv("cleaned3.csv")
# Load pre-computed embeddings
embeddings = torch.load("embeddings1_1.pt")
embeddings2 = torch.load("embeddings2_1.pt")
embeddings3 = torch.load("embeddings3_1.pt")
embeddingsa = torch.load("embeddings1.pt")
embeddingsa2 = torch.load("embeddings2.pt")
embeddingsa3 = torch.load("embeddings3.pt")
# Extract questions and links
df_questions = df["question"].values
df_links = df["link"].values
df2_questions = df2["question"].values
df2_links = df2["link"].values
df3_questions = df3["question"].values
df3_links = df3["url"].values
ARABIC_STOPWORDS = {
'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ูู', 'ููุง', 'ููู
', 'ู', 'ุฃู
', 'ุฅู'
}
def arabic_word_tokenize(text):
if not isinstance(text, str):
return []
# Remove diacritics
text = re.sub(r'[\u064B-\u065F\u0670]', '', text)
# Extract only Arabic words (length โฅ 2)
tokens = re.findall(r'[\u0600-\u06FF]{2,}', text)
return [t for t in tokens if t not in ARABIC_STOPWORDS]
def prepare_bm25_corpus(questions):
"""Prepare tokenized corpus for BM25"""
tokenized_corpus = []
for question in questions:
tokens = arabic_word_tokenize(question)
tokenized_corpus.append(tokens)
return tokenized_corpus
# Initialize BM25 models for each dataset
print("Initializing BM25 models...")
bm25_corpus1 = prepare_bm25_corpus(df_questions)
bm25_corpus2 = prepare_bm25_corpus(df2_questions)
bm25_corpus3 = prepare_bm25_corpus(df3_questions)
bm25_model1 = BM25Okapi(bm25_corpus1)
bm25_model2 = BM25Okapi(bm25_corpus2)
bm25_model3 = BM25Okapi(bm25_corpus3)
print("BM25 models initialized!")
def compute_bm25_scores(query, bm25_model):
"""Compute BM25 scores for a query"""
query_tokens = arabic_word_tokenize(query)
if not query_tokens:
return np.zeros(len(bm25_model.corpus))
scores = bm25_model.get_scores(query_tokens)
return scores
def compute_word_overlap(query, questions):
"""Enhanced word overlap computation"""
query_words = set(arabic_word_tokenize(query))
if len(query_words) == 0:
return [0.0] * len(questions)
overlaps = []
for q in questions:
q_words = set(arabic_word_tokenize(q))
if len(q_words) == 0:
overlaps.append(0.0)
continue
# Use Jaccard similarity (intersection over union)
intersection = len(query_words & q_words)
union = len(query_words | q_words)
jaccard = intersection / union if union > 0 else 0.0
# Also compute coverage (how much of query is matched)
coverage = intersection / len(query_words)
# Combine both: prioritize coverage but consider similarity
overlap_score = 0.7 * coverage + 0.3 * jaccard
overlaps.append(overlap_score)
return overlaps
def normalize_scores(scores):
"""Normalize scores to 0-1 range"""
scores = np.array(scores)
if np.max(scores) == np.min(scores):
return np.zeros_like(scores)
return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
def predict(text):
print(f"Received query: {text}")
if not text or text.strip() == "":
return "No query provided"
# Semantic similarity scores
query_embedding = model.encode(text, convert_to_tensor=True)
query_embeddinga = modela.encode(text, convert_to_tensor=True)
# Cosine similarities (averaged from two models)
sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]) / 2
sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
# BM25 scores
bm25_scores1 = compute_bm25_scores(text, bm25_model1)
bm25_scores2 = compute_bm25_scores(text, bm25_model2)
bm25_scores3 = compute_bm25_scores(text, bm25_model3)
# Word overlap scores
word_overlap1 = compute_word_overlap(text, df_questions)
word_overlap2 = compute_word_overlap(text, df2_questions)
word_overlap3 = compute_word_overlap(text, df3_questions)
# Normalize all scores for fair combination
norm_sim1 = normalize_scores(sim_scores1.cpu().numpy())
norm_sim2 = normalize_scores(sim_scores2.cpu().numpy())
norm_sim3 = normalize_scores(sim_scores3.cpu().numpy())
norm_bm25_1 = normalize_scores(bm25_scores1)
norm_bm25_2 = normalize_scores(bm25_scores2)
norm_bm25_3 = normalize_scores(bm25_scores3)
norm_word1 = normalize_scores(word_overlap1)
norm_word2 = normalize_scores(word_overlap2)
norm_word3 = normalize_scores(word_overlap3)
# Adaptive weighting based on query characteristics
query_words = arabic_word_tokenize(text)
query_length = len(query_words)
if query_length <= 2:
# Short queries: prioritize exact matches (BM25 + word overlap)
semantic_weight = 0.3
bm25_weight = 0.4
word_weight = 0.3
elif query_length <= 5:
# Medium queries: balanced approach
semantic_weight = 0.4
bm25_weight = 0.35
word_weight = 0.25
else:
# Long queries: prioritize semantic understanding
semantic_weight = 0.5
bm25_weight = 0.3
word_weight = 0.2
def create_combined_results(questions, links, norm_semantic, norm_bm25, norm_word):
combined_results = []
for i in range(len(questions)):
semantic_score = float(norm_semantic[i])
bm25_score = float(norm_bm25[i])
word_score = float(norm_word[i])
# Enhanced scoring with BM25
combined_score = (semantic_weight * semantic_score +
bm25_weight * bm25_score +
word_weight * word_score)
# Boost results that perform well across multiple metrics
high_performance_count = sum([
semantic_score > 0.7,
bm25_score > 0.7,
word_score > 0.5
])
if high_performance_count >= 2:
boost = 0.1
elif high_performance_count >= 1:
boost = 0.05
else:
boost = 0.0
final_score = combined_score + boost
combined_results.append({
"question": questions[i],
"link": links[i],
"semantic_score": semantic_score,
"bm25_score": bm25_score,
"word_overlap_score": word_score,
"combined_score": final_score
})
return combined_results
# Create combined results for all datasets
combined1 = create_combined_results(df_questions, df_links, norm_sim1, norm_bm25_1, norm_word1)
combined2 = create_combined_results(df2_questions, df2_links, norm_sim2, norm_bm25_2, norm_word2)
combined3 = create_combined_results(df3_questions, df3_links, norm_sim3, norm_bm25_3, norm_word3)
def get_diverse_top_results(combined_results, top_k=5):
"""Get diverse top results using multiple ranking strategies"""
# Sort by combined score and get top candidates
by_combined = sorted(combined_results, key=lambda x: x["combined_score"], reverse=True)
top_combined = by_combined[:3]
# Get questions from top combined to avoid duplicates
used_questions = {item["question"] for item in top_combined}
# Add best BM25 result not already included
by_bm25 = sorted(combined_results, key=lambda x: x["bm25_score"], reverse=True)
bm25_pick = None
for item in by_bm25:
if item["question"] not in used_questions:
bm25_pick = item
break
# Add best semantic result not already included
by_semantic = sorted(combined_results, key=lambda x: x["semantic_score"], reverse=True)
semantic_pick = None
if bm25_pick:
used_questions.add(bm25_pick["question"])
for item in by_semantic:
if item["question"] not in used_questions:
semantic_pick = item
break
# Combine results
final_results = top_combined.copy()
if bm25_pick:
final_results.append(bm25_pick)
if semantic_pick:
final_results.append(semantic_pick)
return final_results[:top_k]
# Get top results for each dataset
top1 = get_diverse_top_results(combined1)
top2 = get_diverse_top_results(combined2)
top3 = get_diverse_top_results(combined3)
results = {
"top2": top2,
"top3": top3,
"top1": top1,
"query_info": {
"query_length": query_length,
"weights": {
"semantic": semantic_weight,
"bm25": bm25_weight,
"word_overlap": word_weight
}
}
}
return results
title = "Enhanced Search with BM25"
iface = gr.Interface(
fn=predict,
inputs=[gr.Textbox(label="Search Query", lines=3)],
outputs='json',
title=title,
description="Arabic text search using combined semantic similarity, BM25, and word overlap scoring"
)
if __name__ == "__main__":
iface.launch() |