tomaarsen's picture
tomaarsen HF Staff
Add new SentenceTransformer model
54f4e7b verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:200000
  - loss:MSELoss
base_model: nreimers/TinyBERT_L-4_H-312_v2
widget:
  - source_sentence: >-
      At an outdoor event in an Asian-themed area, a crowd congregates as one
      person in a yellow Chinese dragon costume confronts the camera.
    sentences:
      - Boy dressed in blue holds a toy.
      - the animal is running
      - Two young asian men are squatting.
  - source_sentence: A man with a shopping cart is studying the shelves in a supermarket aisle.
    sentences:
      - The children are watching TV at home.
      - >-
        Three young boys one is holding a camera and another is holding a green
        toy all are wearing t-shirt and smiling.
      - >-
        A large group of people are gathered outside of a brick building lit
        with spotlights.
  - source_sentence: The door is open.
    sentences:
      - A girl is using an apple laptop with her headphones in her ears.
      - >-
        There are three men in this picture, two are on motorbikes, one of the
        men has a large piece of furniture on the back of his bike, the other is
        about to be handed a piece of paper by a man in a white shirt.
      - >-
        Three girls are standing together in a room, one is listening, one is
        writing on a wall and the third is talking to them.
  - source_sentence: >-
      A small group of children are standing in a classroom and one of them has
      a foot in a trashcan, which also has a rope leading out of it.
    sentences:
      - People are playing music.
      - Children are swimming at the beach.
      - Women are celebrating at a bar.
  - source_sentence: >-
      A black dog is drinking next to a brown and white dog that is looking at
      an orange ball in the lake, whilst a horse and rider passes behind.
    sentences:
      - Some men with jerseys are in a bar, watching a soccer match.
      - the guy is dead
      - >-
        There are two people running around a track in lane three and the one
        wearing a blue shirt with a green thing over the eyes is just barely
        ahead of the guy wearing an orange shirt and sunglasses.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - negative_mse
co2_eq_emissions:
  emissions: 2.8523555208748004
  energy_consumed: 0.010658150379545777
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.06
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.808118809417341
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8213188524284026
            name: Spearman Cosine
      - task:
          type: knowledge-distillation
          name: Knowledge Distillation
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: negative_mse
            value: -78.18629741668701
            name: Negative Mse
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.7496317179823885
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7520734191438844
            name: Spearman Cosine

SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2

This is a sentence-transformers model finetuned from nreimers/TinyBERT_L-4_H-312_v2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nreimers/TinyBERT_L-4_H-312_v2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 312 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2-normalized")
# Run inference
sentences = [
    'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
    'Some men with jerseys are in a bar, watching a soccer match.',
    'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.0448,  0.0490],
#         [-0.0448,  1.0000,  0.3433],
#         [ 0.0490,  0.3433,  1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.8081 0.7496
spearman_cosine 0.8213 0.7521

Knowledge Distillation

Metric Value
negative_mse -78.1863

Training Details

Training Dataset

Unnamed Dataset

  • Size: 200,000 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 4 tokens
    • mean: 12.24 tokens
    • max: 52 tokens
    • size: 312 elements
  • Samples:
    sentence label
    A person on a horse jumps over a broken down airplane. [0.005435045808553696, 0.042343951761722565, -0.1521506905555725, 0.10078108310699463, 0.06585284322500229, ...]
    Children smiling and waving at camera [-0.14921779930591583, 0.17264199256896973, 0.3912944793701172, 0.2817707657814026, -0.1517026573419571, ...]
    A boy is jumping on skateboard in the middle of a red bridge. [0.1835351139307022, 0.17705069482326508, 0.07568985968828201, 0.37269654870033264, -0.04005592316389084, ...]
  • Loss: MSELoss

Evaluation Dataset

Unnamed Dataset

  • Size: 10,000 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 5 tokens
    • mean: 13.23 tokens
    • max: 57 tokens
    • size: 312 elements
  • Samples:
    sentence label
    Two women are embracing while holding to go packages. [-0.3905734717845917, -0.12415792047977448, 0.13489434123039246, -0.13027705252170563, 0.09115917980670929, ...]
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. [-0.11542800068855286, 0.039172928780317307, 0.16285762190818787, 0.2441333532333374, -0.1625598669052124, ...]
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles [0.20657853782176971, 0.18892505764961243, -0.011273683980107307, -0.15149112045764923, 0.18431058526039124, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0001
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine negative_mse sts-test_spearman_cosine
0.032 100 1.3189 - - - -
0.064 200 1.1638 - - - -
0.096 300 1.0132 - - - -
0.128 400 0.924 - - - -
0.16 500 0.8666 0.9844 0.7668 -79.6441 -
0.192 600 0.8265 - - - -
0.224 700 0.7954 - - - -
0.256 800 0.7749 - - - -
0.288 900 0.7542 - - - -
0.32 1000 0.7318 0.8942 0.7966 -78.8491 -
0.352 1100 0.7207 - - - -
0.384 1200 0.7085 - - - -
0.416 1300 0.6996 - - - -
0.448 1400 0.6889 - - - -
0.48 1500 0.6823 0.8533 0.8125 -78.5136 -
0.512 1600 0.6704 - - - -
0.544 1700 0.6662 - - - -
0.576 1800 0.6587 - - - -
0.608 1900 0.6515 - - - -
0.64 2000 0.6479 0.8323 0.8160 -78.3540 -
0.672 2100 0.6463 - - - -
0.704 2200 0.6423 - - - -
0.736 2300 0.6379 - - - -
0.768 2400 0.6343 - - - -
0.8 2500 0.6309 0.8185 0.8196 -78.2491 -
0.832 2600 0.6275 - - - -
0.864 2700 0.628 - - - -
0.896 2800 0.6232 - - - -
0.928 2900 0.623 - - - -
0.96 3000 0.6229 0.8107 0.8213 -78.1863 -
0.992 3100 0.6208 - - - -
-1 -1 - - - - 0.7521
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.011 kWh
  • Carbon Emitted: 0.003 kg of CO2
  • Hours Used: 0.06 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 5.2.0.dev0
  • Transformers: 4.53.3
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.6.0
  • Datasets: 4.2.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}