metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:200000
- loss:MSELoss
base_model: nreimers/TinyBERT_L-4_H-312_v2
widget:
- source_sentence: >-
At an outdoor event in an Asian-themed area, a crowd congregates as one
person in a yellow Chinese dragon costume confronts the camera.
sentences:
- Boy dressed in blue holds a toy.
- the animal is running
- Two young asian men are squatting.
- source_sentence: A man with a shopping cart is studying the shelves in a supermarket aisle.
sentences:
- The children are watching TV at home.
- >-
Three young boys one is holding a camera and another is holding a green
toy all are wearing t-shirt and smiling.
- >-
A large group of people are gathered outside of a brick building lit
with spotlights.
- source_sentence: The door is open.
sentences:
- A girl is using an apple laptop with her headphones in her ears.
- >-
There are three men in this picture, two are on motorbikes, one of the
men has a large piece of furniture on the back of his bike, the other is
about to be handed a piece of paper by a man in a white shirt.
- >-
Three girls are standing together in a room, one is listening, one is
writing on a wall and the third is talking to them.
- source_sentence: >-
A small group of children are standing in a classroom and one of them has
a foot in a trashcan, which also has a rope leading out of it.
sentences:
- People are playing music.
- Children are swimming at the beach.
- Women are celebrating at a bar.
- source_sentence: >-
A black dog is drinking next to a brown and white dog that is looking at
an orange ball in the lake, whilst a horse and rider passes behind.
sentences:
- Some men with jerseys are in a bar, watching a soccer match.
- the guy is dead
- >-
There are two people running around a track in lane three and the one
wearing a blue shirt with a green thing over the eyes is just barely
ahead of the guy wearing an orange shirt and sunglasses.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- negative_mse
co2_eq_emissions:
emissions: 2.8523555208748004
energy_consumed: 0.010658150379545777
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.06
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.808118809417341
name: Pearson Cosine
- type: spearman_cosine
value: 0.8213188524284026
name: Spearman Cosine
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -78.18629741668701
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7496317179823885
name: Pearson Cosine
- type: spearman_cosine
value: 0.7520734191438844
name: Spearman Cosine
SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a sentence-transformers model finetuned from nreimers/TinyBERT_L-4_H-312_v2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/TinyBERT_L-4_H-312_v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 312 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2-normalized")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'Some men with jerseys are in a bar, watching a soccer match.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.0448, 0.0490],
# [-0.0448, 1.0000, 0.3433],
# [ 0.0490, 0.3433, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.8081 | 0.7496 |
| spearman_cosine | 0.8213 | 0.7521 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -78.1863 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 200,000 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
- size: 312 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.[0.005435045808553696, 0.042343951761722565, -0.1521506905555725, 0.10078108310699463, 0.06585284322500229, ...]Children smiling and waving at camera[-0.14921779930591583, 0.17264199256896973, 0.3912944793701172, 0.2817707657814026, -0.1517026573419571, ...]A boy is jumping on skateboard in the middle of a red bridge.[0.1835351139307022, 0.17705069482326508, 0.07568985968828201, 0.37269654870033264, -0.04005592316389084, ...] - Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
- size: 312 elements
- Samples:
sentence label Two women are embracing while holding to go packages.[-0.3905734717845917, -0.12415792047977448, 0.13489434123039246, -0.13027705252170563, 0.09115917980670929, ...]Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.[-0.11542800068855286, 0.039172928780317307, 0.16285762190818787, 0.2441333532333374, -0.1625598669052124, ...]A man selling donuts to a customer during a world exhibition event held in the city of Angeles[0.20657853782176971, 0.18892505764961243, -0.011273683980107307, -0.15149112045764923, 0.18431058526039124, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 0.0001num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
|---|---|---|---|---|---|---|
| 0.032 | 100 | 1.3189 | - | - | - | - |
| 0.064 | 200 | 1.1638 | - | - | - | - |
| 0.096 | 300 | 1.0132 | - | - | - | - |
| 0.128 | 400 | 0.924 | - | - | - | - |
| 0.16 | 500 | 0.8666 | 0.9844 | 0.7668 | -79.6441 | - |
| 0.192 | 600 | 0.8265 | - | - | - | - |
| 0.224 | 700 | 0.7954 | - | - | - | - |
| 0.256 | 800 | 0.7749 | - | - | - | - |
| 0.288 | 900 | 0.7542 | - | - | - | - |
| 0.32 | 1000 | 0.7318 | 0.8942 | 0.7966 | -78.8491 | - |
| 0.352 | 1100 | 0.7207 | - | - | - | - |
| 0.384 | 1200 | 0.7085 | - | - | - | - |
| 0.416 | 1300 | 0.6996 | - | - | - | - |
| 0.448 | 1400 | 0.6889 | - | - | - | - |
| 0.48 | 1500 | 0.6823 | 0.8533 | 0.8125 | -78.5136 | - |
| 0.512 | 1600 | 0.6704 | - | - | - | - |
| 0.544 | 1700 | 0.6662 | - | - | - | - |
| 0.576 | 1800 | 0.6587 | - | - | - | - |
| 0.608 | 1900 | 0.6515 | - | - | - | - |
| 0.64 | 2000 | 0.6479 | 0.8323 | 0.8160 | -78.3540 | - |
| 0.672 | 2100 | 0.6463 | - | - | - | - |
| 0.704 | 2200 | 0.6423 | - | - | - | - |
| 0.736 | 2300 | 0.6379 | - | - | - | - |
| 0.768 | 2400 | 0.6343 | - | - | - | - |
| 0.8 | 2500 | 0.6309 | 0.8185 | 0.8196 | -78.2491 | - |
| 0.832 | 2600 | 0.6275 | - | - | - | - |
| 0.864 | 2700 | 0.628 | - | - | - | - |
| 0.896 | 2800 | 0.6232 | - | - | - | - |
| 0.928 | 2900 | 0.623 | - | - | - | - |
| 0.96 | 3000 | 0.6229 | 0.8107 | 0.8213 | -78.1863 | - |
| 0.992 | 3100 | 0.6208 | - | - | - | - |
| -1 | -1 | - | - | - | - | 0.7521 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.011 kWh
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.06 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.2.0.dev0
- Transformers: 4.53.3
- PyTorch: 2.8.0+cu128
- Accelerate: 1.6.0
- Datasets: 4.2.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}