tomaarsen's picture
tomaarsen HF Staff
Add new SentenceTransformer model
54f4e7b verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:200000
- loss:MSELoss
base_model: nreimers/TinyBERT_L-4_H-312_v2
widget:
- source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates
as one person in a yellow Chinese dragon costume confronts the camera.
sentences:
- Boy dressed in blue holds a toy.
- the animal is running
- Two young asian men are squatting.
- source_sentence: A man with a shopping cart is studying the shelves in a supermarket
aisle.
sentences:
- The children are watching TV at home.
- Three young boys one is holding a camera and another is holding a green toy all
are wearing t-shirt and smiling.
- A large group of people are gathered outside of a brick building lit with spotlights.
- source_sentence: The door is open.
sentences:
- A girl is using an apple laptop with her headphones in her ears.
- There are three men in this picture, two are on motorbikes, one of the men has
a large piece of furniture on the back of his bike, the other is about to be handed
a piece of paper by a man in a white shirt.
- Three girls are standing together in a room, one is listening, one is writing
on a wall and the third is talking to them.
- source_sentence: A small group of children are standing in a classroom and one of
them has a foot in a trashcan, which also has a rope leading out of it.
sentences:
- People are playing music.
- Children are swimming at the beach.
- Women are celebrating at a bar.
- source_sentence: A black dog is drinking next to a brown and white dog that is looking
at an orange ball in the lake, whilst a horse and rider passes behind.
sentences:
- Some men with jerseys are in a bar, watching a soccer match.
- the guy is dead
- There are two people running around a track in lane three and the one wearing
a blue shirt with a green thing over the eyes is just barely ahead of the guy
wearing an orange shirt and sunglasses.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- negative_mse
co2_eq_emissions:
emissions: 2.8523555208748004
energy_consumed: 0.010658150379545777
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.06
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.808118809417341
name: Pearson Cosine
- type: spearman_cosine
value: 0.8213188524284026
name: Spearman Cosine
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -78.18629741668701
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7496317179823885
name: Pearson Cosine
- type: spearman_cosine
value: 0.7520734191438844
name: Spearman Cosine
---
# SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 312 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2-normalized")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'Some men with jerseys are in a bar, watching a soccer match.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.0448, 0.0490],
# [-0.0448, 1.0000, 0.3433],
# [ 0.0490, 0.3433, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.8081 | 0.7496 |
| **spearman_cosine** | **0.8213** | **0.7521** |
#### Knowledge Distillation
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-78.1863** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 200,000 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
| sentence | label |
|:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>[0.005435045808553696, 0.042343951761722565, -0.1521506905555725, 0.10078108310699463, 0.06585284322500229, ...]</code> |
| <code>Children smiling and waving at camera</code> | <code>[-0.14921779930591583, 0.17264199256896973, 0.3912944793701172, 0.2817707657814026, -0.1517026573419571, ...]</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[0.1835351139307022, 0.17705069482326508, 0.07568985968828201, 0.37269654870033264, -0.04005592316389084, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>[-0.3905734717845917, -0.12415792047977448, 0.13489434123039246, -0.13027705252170563, 0.09115917980670929, ...]</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-0.11542800068855286, 0.039172928780317307, 0.16285762190818787, 0.2441333532333374, -0.1625598669052124, ...]</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[0.20657853782176971, 0.18892505764961243, -0.011273683980107307, -0.15149112045764923, 0.18431058526039124, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
|:--------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:|
| 0.032 | 100 | 1.3189 | - | - | - | - |
| 0.064 | 200 | 1.1638 | - | - | - | - |
| 0.096 | 300 | 1.0132 | - | - | - | - |
| 0.128 | 400 | 0.924 | - | - | - | - |
| 0.16 | 500 | 0.8666 | 0.9844 | 0.7668 | -79.6441 | - |
| 0.192 | 600 | 0.8265 | - | - | - | - |
| 0.224 | 700 | 0.7954 | - | - | - | - |
| 0.256 | 800 | 0.7749 | - | - | - | - |
| 0.288 | 900 | 0.7542 | - | - | - | - |
| 0.32 | 1000 | 0.7318 | 0.8942 | 0.7966 | -78.8491 | - |
| 0.352 | 1100 | 0.7207 | - | - | - | - |
| 0.384 | 1200 | 0.7085 | - | - | - | - |
| 0.416 | 1300 | 0.6996 | - | - | - | - |
| 0.448 | 1400 | 0.6889 | - | - | - | - |
| 0.48 | 1500 | 0.6823 | 0.8533 | 0.8125 | -78.5136 | - |
| 0.512 | 1600 | 0.6704 | - | - | - | - |
| 0.544 | 1700 | 0.6662 | - | - | - | - |
| 0.576 | 1800 | 0.6587 | - | - | - | - |
| 0.608 | 1900 | 0.6515 | - | - | - | - |
| 0.64 | 2000 | 0.6479 | 0.8323 | 0.8160 | -78.3540 | - |
| 0.672 | 2100 | 0.6463 | - | - | - | - |
| 0.704 | 2200 | 0.6423 | - | - | - | - |
| 0.736 | 2300 | 0.6379 | - | - | - | - |
| 0.768 | 2400 | 0.6343 | - | - | - | - |
| 0.8 | 2500 | 0.6309 | 0.8185 | 0.8196 | -78.2491 | - |
| 0.832 | 2600 | 0.6275 | - | - | - | - |
| 0.864 | 2700 | 0.628 | - | - | - | - |
| 0.896 | 2800 | 0.6232 | - | - | - | - |
| 0.928 | 2900 | 0.623 | - | - | - | - |
| **0.96** | **3000** | **0.6229** | **0.8107** | **0.8213** | **-78.1863** | **-** |
| 0.992 | 3100 | 0.6208 | - | - | - | - |
| -1 | -1 | - | - | - | - | 0.7521 |
* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.011 kWh
- **Carbon Emitted**: 0.003 kg of CO2
- **Hours Used**: 0.06 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.2.0.dev0
- Transformers: 4.53.3
- PyTorch: 2.8.0+cu128
- Accelerate: 1.6.0
- Datasets: 4.2.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->